Statistical Data Integration

Partha Lahiri University of Maryland College Park, USA

Based on joint research with Aditi Sen, Doctoral Student, University of Maryland College Park, USA

MET2023, Warsaw, Poland, July 3-5, 2023

Method

Let

- *N_i*: the finite population size for the *i*th area (e.g., state in a nationwide sample survey);
- *m*: number of areas of interest (e.g., *m* = 51 if we are interested in all US states and the District of Columbia);
- Y_{ij} : value of the outcome variable for the *j*th unit of the *i*th area, $i = 1, \dots, m; j = 1, \dots, N_i$.

Parameter of interest:

$$ar{Y}_i = N_i^{-1} \sum_{j=1}^{N_i} Y_{ij}, \ i = 1, \cdots, m,$$

For the estimation, we have:

- A small sample \tilde{s} of size \tilde{n} from the finite population
 - s contains information on the study variable Y and a vector of auxiliary variables X related to Y for all units.
 - The area sample sizes n
 i of s are small; n
 i could be zero for some areas.
 - Units of \tilde{s} cannot be linked to the finite population units.
- A big sample *s* of size *n* from the same finite population
 - s does not contain information on Y for any unit, but contains the same vector of auxiliary variables X.
 - The area sample sizes n_i of *s* are large.
 - Units of *s* cannot be linked to the finite population.
 - There is no or negligible overlap of units between the big sample s and small sample s̃.
- A vector of auxiliary variables at the area level.

Define

$$\bar{Y}_{iw} = \sum_{j=1}^{n_i} w_{ij} Y_{ij},$$

where

- Y_{ij}: unobserved study variable for the *j*th unit of *i*th area in the big sample *s*, *i* = 1, · · · , *m*; *j* = 1, · · · , *n_i*.
- w_{ij} : known weight assigned to the *j*th unit of the *i*th area; we assume $\sum_{j=1}^{n_i} w_{ij} = 1$.
- *n_i*: sample size for the *i*th area; we assume *n_i* is large for each area.

We assume

$$\bar{Y}_i \approx \bar{Y}_{iw}, i = 1, \cdots, m.$$

Under certain assumptions, such an approximation can be justified appealing to the law of large numbers since n_i 's are large for all *i*.

Prediction of \overline{Y}_i , $i = 1, \cdots, m$

- For the prediction problem, we assume a *working* model for the entire finite population.
- We assume noninformative sampling so the population working model will hold for both s and s.
- We predict Y_{ij} for all units of s using information on both Y and X from s̃, X contained in s, and other state level available auxiliary variables.
- The working model can be fitted using *š* because it contains information on both *Y* and *X* for all units.
- For all units in s, we predict Y_{ij} by:

$$\hat{Y}_{ij} = E(Y_{ij}|\tilde{s})$$

because this will minimize the mean squared prediction error (MSPE).

A Working Model

For
$$i = 1, \cdots, m; j = 1, \cdots, N_i$$
, assume

Level 1:
$$Y_{ij}|\theta_{ij} \stackrel{ind}{\sim} \text{Bernoulli}(\theta_{ij}),$$

Level 2: $\theta_{ij} = \frac{\exp(x_{ij}'\beta + v_i)}{1 + \exp(x_{ij}'\beta + v_i)},$
Level 3: $v_i \stackrel{iid}{\sim} N(0, \sigma^2),$

where

- \blacksquare β is a vector of unknown fixed effects;
- v_i is random effect specific to the *i*th area with unknown variance component σ^2 .

The best predictor (BP) of Y_{ij} for any unit in *s* is given by:

$$\hat{Y}_{ij}^{BP} \equiv \hat{Y}_{ij}^{BP}(\beta, \sigma^2) = E\left[\frac{\exp(x_{ij}^{\prime}\beta + v_i)}{1 + \exp(x_{ij}^{\prime}\beta + v_i)} \mid \tilde{s}
ight],$$

where the expectation is with respect to the conditional distribution of v_i given \tilde{s} .

Empirical Best Prediction (EBP) Approach

Estimate β and σ² by a classical method (e.g., maximum likelihood, residual likelihood, adjusted maximum likelihood).

• Let $(\hat{\beta}, \hat{\sigma}^2)$ be an estimator of (β, σ^2) .

EBP of Y_{ij} for any unit in *s*:

$$\hat{Y}^{EBP}_{ij} = \hat{Y}^{BP}_{ij}(\hat{\beta}, \hat{\sigma}^2).$$

EBP of \overline{Y}_i :

$$\hat{ar{Y}}^{EBP}_{i} pprox \sum_{j=1}^{n_{i}} w_{ij} \hat{Y}^{EBP}_{ij}$$
 ,

Data sources:

- PEW: Pew Research Organization's October 2016 Political Survey.
- CPS: 2016 Voting and Registration Supplement to the Current Population Survey (CPS).
- Actual 2016 Election Result

Study variable: Voting preference, a binary variable taking on the value 1 if the person prefers to vote for Clinton and 0 otherwise.

Areas of interest example: States and DC

Table: List of unit level auxiliary variables

Predictor	Levels	Values
Age	4	18-29 years, 30-44 years, 45 - 64 years, 65+ years
Gender	2	Male or female.
Race	3	White, Black or Hispanic.
Education	4	Higher Secondary, Some college, College Graduate or Postgraduate
Region	4	Northeast, South, North Central or West

Area level auxiliary variable: state specific percentage of voters who voted for Obama in the 2012 presidential election.

Figure: Multiple survey data and structure

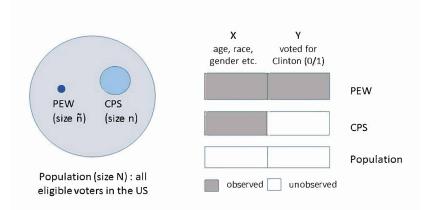


Table: Model 1: All auxiliary variables

	Est. Std.	Error	z value	Pr(> z)	
(Intercept)	-0.81	0.23	-3.53	4.21e-4	***
age: 30-44 years	-0.14	0.20	-0.71	0.48	
age: 45-64 years	-0.34	0.18	-1.95	0.05	
age: 65+ years	-0.18	0.19	-0.95	0.34	
gender: female	0.64	0.11	5.83	5.61e-09	***
race: black	3.05	0.32	9.68	i 2e-16	***
race: hispanic	1.12	0.21	5.39	7.19e-08	***
some college	0.11	0.16	0.66	0.51	
college graduate	0.48	0.16	3.06	2.2e-3	**
postgraduate	1.06	0.17	6.33	2.43e-10	***
South	-0.25	0.19	-1.31	0.19	
North Central	-0.09	0.19	-0.48	0.63	
West	0.14	0.19	0.75	0.45	
voting % Obama	0.97	0.20	4.78	1.82e-06	***

Table: Model 2: Significant	auxiliary variables only
-----------------------------	--------------------------

	Est. Std.	Error	z value	Pr(> z)	
(Intercept)	-0.96	0.12	-8.35	i 2e-16	***
age: 45-64 years	-0.22	0.11	-1.98	0.048	*
gender: female	0.63	0.11	5.75	8.77e-09	***
race: black	3.01	0.31	9.58	i 2e-16	***
race: hispanic	1.13	0.21	5.51	3.62e-08	***
college graduate	0.42	0.13	3.34	8.48e-4	***
postgraduate	0.99	0.14	6.99	2.75e-12	***
voting % Obama	1.10	0.19	5.70	1.13e-08	***

Estimated standard deviation of random effect is 0.21.

Table: Model selection

Model	Model Description	AIC	BIC
Model 1	Mixed effect all covariates	2032.5	2114.1
Model 2	Mixed effect significant covariates only	2026.3	2075.2

From the model selection criteria AIC and BIC, we conclude that **model 2 is better than Model 1** and we choose Model 2 for prediction of voting %.

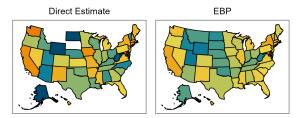


Figure: Actual and predicted valus for all states

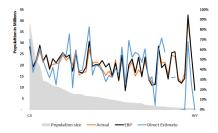


Figure: Direct Estimator SE and Root MSPE from EBP

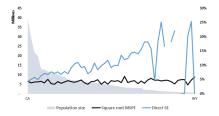


Table: Comparison of direct and EBP for a few selected states

_			Direct Est	EBP
State	Pop Size	Actual (%)	SE (%)	Root MSPE (%)
			70.5	63.1
CA	39 mil	61.5	(4.3)	(4.4)
			49.2	50.0
FL	21 mil	47.4	(5.7)	(4.1)
			83.2	68.4
MD	6 mil	60.3	(7.0)	(3.3)
				30.8
MT	110 k	35.4		(4.7)
		o / =		29.3
SD	895 k	31.7		(4.8)
			0	31.4
AK	732 k	36.6	(0)	(5.0)
			68.2	95.0
DC	670 k	90.9	(20.2)	(3.1)
			0	19.5
WY	578 k	21.9	(0)	(5.8)

Table: Summary evaluation measures

Measure	Formula	Direct	EBP
ASD	$\sum_{i=1}^{51} (\hat{Y}_{i}^{est} - \hat{Y}_{i}^{act})^{2}$	2137.3	18.9
RASD	\sqrt{ASD}	46.2	4.3
AAD	$\sum_{i=1}^{51} \left \hat{Y}_i^{est} - \hat{Y}_i^{act} \right $	44.6	3.5

Concluding Remarks and Extensions

- In our application, EBP method improves on the direct method considerably. There was **no sample** for Montana and South Dakota in PEW survey data. But we can obtain estimates for those using EBP method.
- Use of a bigger survey allows us to include many relevant auxiliary variables in the working model.
- In our application, estimate of the random effects variance is positive. However, for parametric bootstrap samples, we observed 0 estimates for the random effects variance.
- We have extended an adjusted maximum likelihood method to get around the problem associated with the boundary value problem.

Contact Information

Partha Lahiri

Professor and Director, Joint Program in Survey Methodology & Professor, Department of Mathematics 1218 Lefrak Hall University of Maryland College Park, MD 20742 Email: plahiri@umd.edu

Thank You!