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Expected shortfall

Summary statistics are used everywhere for communication and
understanding.

University of Warsaw is ranked #2 in Poland by Times Higher Education Rankings.

Poland passport is ranked #9 in the World by the Guide Passport Ranking Index.

Poland is 25-th safest country ranked by Global Peace Index.
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Expected shortfall

Investment Risk (IMF eLibrary)
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Expected shortfall

Expected Shortfall (upper tail):

For a continuous random variable Y , the expected shortfall of level τ is

vY (τ) = E[Y |Y ≥ q(τ)] ,

where q(τ) is the τ -quantile of Y .

An equivalent expression: v(τ) =
1

1− τ

∫ 1

τ
q(u)du .

Other names:

Conditional Value-at-Rick (CVaR)

Superquantile

Expected tail loss; Tail average

Xuming He (UMich) 5 / 42 July 3, 2023; Warsaw 5 / 42



Expected shortfall

ES as measure of treatment effect

Treatment T ∈ {0, 1}
Potential outcome Y (0), Y (1)

Average treatment effect (ATE) = E[Y (1)]− E[Y (0)]

Tail average treatment effect

TATE = vY (1)(τ)− vY (0)(τ).
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Expected shortfall

A Clinical Example:

Rheumatoid arthritis is a chronic inflammatory disorder (of joints).
Most treatments work for some but not for all.
Total Sharp Score, a measure of joint space narrowing and erosion.

X. HE, Y.-H. HSU AND M. HU

Quantile function of the TSS change shows that the groups differ mostly in the upper tails.
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Expected shortfall

Treatment effect in one tail

Median treatment effect is nearly zero.
Mean treatment effect is harder to detect.
Expected shortfall at τ = 0.75 is a useful target. Substantial sample size reduction can
be achieved.

X. HE, Y.-H. HSU AND M. HU
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Expected shortfall

Other Applications

Impact of higher energy price on household consumption for the heavier users.

Effect of job training program on income for the lower-paid or higher paid workers.
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Conditional Expected Shortfall

Why conditional expected shortfall?

Losses of different portfolios can be highly correlated, and depend on some common
factors. Lesson from the 2007-2009 financial crisis!

vY |X(τ) = v(τ, x)

Covariate-adjustments can improve statistical power in treatment effect estimation and
detection.

v(τ, x) = α(τ) + xTβ(τ).
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Conditional Expected Shortfall

Challenges in Estimation

Insufficient data for any given X = x;

Tail quantile estimates tend to be unstable;

Expected shortfall is not elicitable (Gneiting, 2011). What?

Mean: µ = argmin
u

E[(Y − u)2].

Quantile: β(τ) = argmin
u

E[ρτ (Y − u)],

where ρτ (u) = u[τ − 1(u < 0)].
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Conditional Expected Shortfall

Challenges in Estimation

Insufficient data for any given X;

Tail quantile estimates tend to be unstable;

Expected shortfall is not elicitable (Gneiting, 2011).

Quantile: β(τ) = argmin
u

E[ρτ (Y −XT
i u)],

where ρτ (u) = u[τ − 1(u < 0)], but

no such loss function defines the expected shortfall.
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Estimation of expected shortfall regression

Solutions: two starting points

1 Start from τ -quantile q(τ).

(Quantile, Expected shortfall) is jointly elicitable (Fissler and Ziegel, 2016) ↪→
joint estimation.

The loss funciton is highly nonconves and non-smooth.

Find a Neyman orthogonalized score for estimating the expected
shortfall ↪→ Two-step estimation. (Barendse, 2020)

2 Start from a preliminary estimate of v(τ).
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Estimation of expected shortfall regression

Solutions: two starting points

1 Start from τ -quantile q(τ).

Joint estimation.

Two-step estimation.

2 Start from a preliminary estimate of v(τ, x) at every or some x, and find a way to
linearize over x.
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Estimation of expected shortfall regression

Two-step Estimation: with data (Xi, Yi)

Assume q(τ) and v(τ) (lower tail) are

q(τ) = xTβ(τ), v(τ) = xTγ(τ).

1 Find quantile regression β̂. (Koenker and Bassett Jr, 1978)

2 Among possible joint loss functions, find one with Neyman orthogonal score for
estimation of γ. (Barendse, 2020)

Zi := (Yi −XT
i β̂)I(Yi ≤ XT

i β̂) + τXT
i β̂

γ̂ = arg minγ

∑
i(Zi − τXT

i γ)
2.
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Estimation of expected shortfall regression

Two-step Estimation (continued)

v(τ, x) = (1− τ)−1

∫ 1

τ
q(u, x)du = h(FY |X) = xTγ,

where h is a functional on the conditional distribution of Y |X.

1 Use nonparametric or machine learning methods for FY |X
2 Use influence function adjustment to construct an estimating equation for γ (Chetverikov

et al., 2022)

Ri : some pseudo response

γ̂ = arg minγ

∑
i(Ri −XT

i γ)
2.
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Estimation of expected shortfall regression

Two-step Estimation (continued)

For possibly heavier tailed outcomes, robust estimation can be done by replacing

γ̂ = arg minγ

∑
i(Ri −XT

i γ)
2.

by

γ̂ = arg minγ

∑
i

hc(Ri −XT
i γ),

where hc is the Huber loss.
Reference: He et al. (2023)
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Estimation of expected shortfall regression

Solutions: two starting points (re-visited)

1 Start from τ -quantile q(τ).

Joint estimation.

Two-step estimation.

2 Start from a preliminary estimate of v(τ, x) at every or some x, and find a way to
linearize over x. More to come.
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Estimation of expected shortfall regression

Optimization Approach

Key fact: (Rockafellar et al., 2014)

v(τ) = argminc

[
c+

1

1− τ

∫ 1

0
(v(u)− c)+du

]
.

The loss function is convex in c if v(u) is given.

Useful for the computation of expected shortfall?
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Estimation of expected shortfall regression

Optimization Approach

Key fact: (Rockafellar et al., 2014)

v(τ) = argminc

[
c+

1

1− τ

∫ 1

0
(v(u)− c)+du

]
.

Generalization to regression:

γ(τ) = argminγ

[
E{XTγ}+ 1

1− τ

∫ 1

0
{v(u, Y −XTγ)}+du

]
,

where v(u, V ) is the (upper) u-expected shortfall of V .
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Estimation of expected shortfall regression

Optimization Approach: bad news?

γ(τ) = argminγ

[
E{XTγ}+ 1

1− τ

∫ 1

0
{v(u, Y −XTγ)}+du

]
,

can be solved iteratively but is not Fisher consistent to the conditional expected shortfall
regression coefficient in general. Yet, this approach has been used quite regularly.
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Estimation of expected shortfall regression

A New Characterization:

γ(τ) = arg minγE
[
ρτ (v(U,X)−XTγ)

]
,

where v(u, x) is the u-expected shortfall of Y |X = x, and

U ∼ Unif(0, 1),

and the expectation is taken over (X,U).
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Estimation of expected shortfall regression

Dissertation work of

Yuanzhi Li, Ph.D. (2022)
Just joined Five Rings Capital, New York
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Estimation of expected shortfall regression

New Approach: Practically Speaking

γ(τ) = argminγE
[
ρτ (v(U,X)−XTγ)

]
,

γ̂(τ) = argminγ
∑

i

∑
j

[
ρτ (v̂(Uj , Xi)−XT

i γ)
]
,

where {uj} is a uniform grid of the interval

[τ − δτ, τ + δ(1− τ)]

for any constant δ ∈ (0, 1].

Input: initial expected shortfall estimates v̂(uj , Xi).
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Estimation of expected shortfall regression

New Approach: a “minor” detail

γ̂(τ) = argminγ
∑

i

∑
j

[
ρτ (v̂(uj , Xi)−XT

i γ)
]
,

where {uj} ∈ [τ − δτ, τ + δ(1− τ)] for any constant δ ∈ (0, 1].

δ = 1 −→ uj ∈ [0, 1]

δ < 1 avoids the extreme quantile calculations.
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Estimation of expected shortfall regression

New Approach: Practically Speaking

γ̂(τ) = argminγ
∑

i

∑
j

[
ρτ (v̂(uj , Xi)−XT

i γ)
]
,

How about iRock?
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Estimation of expected shortfall regression

New Approach: Theoretically Speaking

γ̂(τ) ≈ argminγ

∑
Yi>qi

[
wi(Yi −XT

i γ)
2
]
,

where qi = q(τ,Xi), τ -quantile of Y |(X = Xi),
and wi is the weight that depends on the model.

Our findings:

iRock adapts to data heterogeneity nicely.

The initial estimates do not need to be root-n consistent.
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Estimation of expected shortfall regression

Statistical Property of iRock

√
n(γ̂(τ)− γ(τ))

d−→ N(0, D−1ΩD−1),

where

D = E

(
XXT

v(τ,X)− q(τ,X)

)
,

Ω = E

(
σ2
τ (X)XXT

[v(τ,X)− q(τ,X)]2

)
,

(1− τ)σ2
τ (x) = τ [v(τ, x)− q(τ, x)]2︸ ︷︷ ︸+V ar(Y |X = x, Y ≥ q(τ, x)).
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Estimation of expected shortfall regression

Statistical Property of iRock

√
n(γ̂(τ)− γ(τ))

d−→ N(0, D−1ΩD−1),

Requirements on initial estimators:

v̂(u, x) are sufficiently smooth in u and converges at the rate of op(n
−1/4).

Some aggregated average of v̂(τ, x)− v(τ, x) over x = Xi converges to 0 at the rate of
Op(n

−1/2).

Example: Binning of the covariates.

Xuming He (UMich) 29 / 42 July 3, 2023; Warsaw 29 / 42



Estimation of expected shortfall regression

A Comparison

Location-scale model (all quantile functions are linear)

Y = (XTβ) + (XTγ)e.

Comparison with

N2 = Neyman-orthogonalized estimator
J1, J2 = two specific joint estimators advocated by (Dimitriadis et al., 2019) and (Patton
et al., 2019), respectively

If XTγ = 1, but XTβ is not constant, then

V ariRock = V arN2 < min{VJ1 , VJ2}
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Estimation of expected shortfall regression

A comparison in case of heterogeneity

Y = (XTβ) + (XTγ)e.

Figure: Efficiency comparison relative to the 2-step estimator N2; With different values of γ and β;
dim(X) = 3, e ∼ N(0, 1).
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Estimation of expected shortfall regression

Conclusions about iRock

1 Rockafeller’s optimization-based characterization of superquantile motivated us to find a
valid approach to expected shortfall regression.

2 It requires no joint modeling of quantile regression.

3 It is automatically adaptive to data heterogeneity in a wide variety of models (often
outperforming other methods).

4 Its implementation requires initial expected shortfall estimation, which is challenging if
dim(X) is high.
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Example

Example: low birth weight
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Example

Example: Nulliparity as a risk factor for low birth weight

Nulliparity is known to be a risk factor of preterm birth and low birth weight (Shah, 2010)

The effect has been observed across countries and age groups, but the effect sizes vary.

Our focus: male singleton birth to generally healthy older mothers (age 36+)

Data: 2020 U.S. birth-weight dataset, available at the National Center for Health
Statistics. (Black or white mothers; married, college-educated, non-smokers; n = 79, 336)
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Example

Example: Summary Statistics

Table: Average and interquartile range in the sample

Variable Parity=1 Parity > 1

Birth weight (g) 3301 (3005–3657) 3482 (3185–3820)
Maternal age 38.0 (36.0 – 39.0) 38.1 (36.0 – 39.0)

Gestational weight gain (lb) 30.4 (21.0 – 38.0) 30.2 (22.0 – 38.0)
% of Black mothers 10.2 10.7
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Example

Example: Analysis of (lower tail) Expected Shortfall

Birth weight = (Parity > 1) + (Race = black) + Mom age
+ Mom weight gain + (Mom weight gain)2

Table: Coefficients in ES Regression

Covariates τ = 0.05 τ = 0.20

Intercept 2006.83 (21.53) 2580.32 (9.62)
Parity 325.93 (23.35) 241.22 (10.64)
Race -505.92 (39.09) -297.43 (16.62)

Mom age -34.03 (5.33) -22.20 (2.48)
MWG 21.39 (0.92) 12.67 (0.43)
MWG2 -0.41 (0.04) -0.22 (0.02)
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Example

Example: Analysis of (lower tail) Expected Shortfall

For the lowest 5% of the birth weight distribution (given race, mother’s age and
weight gain), the average “loss” for nulliparous women in this sub-population was
326g.
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Final words

Not yet covered in this presentation

Regression Inference

Causal Inference

Computation/Implementation
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Final words

A warning about “regression”?

Regression may need an age regression therapy ...
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Final words

Thank you!
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Final words
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