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Introduction

@ Instead of kurtosis 77, the paper analyzes the kurtosis
¥ = v2 — 3, which can be positive or negative.

For simplicity, the kurtosis of the normal distribution is
zero!!!

@ Symmetric distributions do not form such a big family as
asymmetric distributions.

@ There is a group of asymmetric distributions, which are
symmetrical for certain parameter values, e.q. the truncated
normal, Birnbaum-Saunders, skew-normal, beta, two-piece
normal and two-piece power normal distributions.
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power,bimodal power normal)

distribution with an undefined kurtosis (Cauchy,Voigt),

distribution with a complicated kurtosis formula (bimodal
power normal, Tukey, von Mises),
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4/52



Introduction

@ distribution with discrete kurtosis values (extended t, Bates,
lrwin-Hall),

5/52



Introduction

@ distribution with discrete kurtosis values (extended t, Bates,
lrwin-Hall),

@ distribution with kurtosis values on infinite interval
(generalized normal, normal-exponential-gamma,
U-quadratic),

5/52



Introduction

@ distribution with discrete kurtosis values (extended t, Bates,
lrwin-Hall),

@ distribution with kurtosis values on infinite interval
(generalized normal, normal-exponential-gamma,
U-quadratic),

@ distribution with kurtosis values on finite interval (ECK,
Q-gaussian, von Mises, U-power),

5/52



Introduction

distribution with discrete kurtosis values (extended t, Bates,
lrwin-Hall),

distribution with kurtosis values on infinite interval
(generalized normal, normal-exponential-gamma,
U-quadratic),

distribution with kurtosis values on finite interval (ECK,
Q-gaussian, von Mises, U-power),

distribution with an existing discontinuous function
p = f (7,), where p is the shape parameter (t, Bates,
[rwin-Hall).

5/52



Introduction

@ distribution with discrete kurtosis values (extended t, Bates,
lrwin-Hall),

© distribution with kurtosis values on infinite interval
(generalized normal, normal-exponential-gamma,
U-quadratic),

@ distribution with kurtosis values on finite interval (ECK,
Q-gaussian, von Mises, U-power),

@ distribution with an existing discontinuous function
p = f (7,), where p is the shape parameter (t, Bates,
[rwin-Hall).

@ distribution with an existing continuous function p = f (7,),
where p is the shape parameter (Q-gaussian. ECK).
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The ECK(a > 0,p > —1) is unimodal distribution defined in the
finite domain with p = f (7,) = 75;2276 and can be used to model
kurtosis 7, € (—2,0).

The kurtosis of the EECK distribution is 756¢K > —2, so this
distribution, like

@ the generalized normal GN (75" > —1.2 (N #0)),

@ the normal-exponential-gamma NEG (FYE¢ > 0)

@ the Tukey T defined in infinite domain (34 > 0),

belongs to the family of symmetrical, unimodal distributions with
kurtosis values on infinite interval.

PDF of the NEG has a complicated form, and the analytical

formula for kurtosis does not exist.

PDF of the T has a simple, closed form for a few exceptional

values of the shape parameter, e.g. we get, respectively, for

=11 0\ uniform and locistic distribitions 6/52
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Introduction

The analytical formulas for kurtosis of the EECK, GN and T
distributions are respectively:

eeen _ T(E)rE)r(e+3en)
EECK _ F<%>2r<p+5+1)r<P+%+1) —3(p>-1,g>0),

T -1 (3 )r(%)r(%)_2—3(5>0)

2 2
5T = F(2A+1) [3“”? —4F(>\+1)F(3>\2-i—1)+r(4>\+21)] _3(=0.25 < ))
(BA+1)(2A+1) T (4A+1)[F(A+1)> =T (2A+1)]
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Introduction

Figure 1 shows the kurtosis as a function of the shape parameters
p>—1,6>0and X € (—0.25,0). The EECK and GN
distributions can be used to model the negative and positive
kurtosis. The negative values of kurtosis for the EECK and GN
distributions are available on [—2,0] and [—1.2,0), respectively. It
is worth mentioning that the EECK is defined in the finite domain
whereas GN and T are defined in infinite domain.

Figure: kurtosis as a function of shape parameter
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Introduction

The new proposal can be extremely useful when you want to
seamlessly test the goodness-of-fit tests (GoFTs) ability to detect
deviations from normality caused by a negative and positive
kurtosis.
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Introduction

The new proposal can be extremely useful when you want to
seamlessly test the goodness-of-fit tests (GoFTs) ability to detect
deviations from normality caused by a negative and positive
kurtosis.

Special cases of the EECK(p > —1, g > 0) distribution are: the

uniform, triangle and obviously ECK(a > 0,p > —1). The
EECK(p > —1,q > 0) tends to the normal distribution
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Introduction

Name Modes Range of 5, Name Modes Range of 5,
Aresine 2 Normal-exponential-gamma 1 (—oc,3)
Bates 1 Plasticizing component 2 (-2.0)
Bimodal exponential power 1,2 Q-gaussian 1 —0.857,0]
Bimodal normal 2 Rademacher A

Bimodal Laplace 2 Raised cosine 1 o)
Bimodal power normal 1.2 Sine 1

Cauchy 1 - Semicircle 1

Degenerate 1 - t 1

ECK 1 Triangle 1

Extended Normal 1,2 Tukey' 1

Extended Laplace 1.2 Tukey? 1

Extended t 1.2 Uniform oo

Generalized normal 1 U-power 2

Hyperbolic secant 1 U-quadratic 2

Irwin-Hall 1 U-shaped 2

Laplace 1 Voigt 1 -
Logistic 1 Von Mises 1 ~1.2,1.069]
Normal 1 0 ‘Wigner semicircle 1 -1

tinfinite domain, Zfinite domain,
Source: Qwn material.

Table: Symmetric distributions with range of kurtosis and modality
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Distribution and density functions
Main properties of introduced distribution Modes and inflection points

and Moors' measure
andom number generator
Fisher Information Ma

Definition 1 The Eta function for p > —1 and g > 0 is defined as

@ e 2B(l,p+1) B 2r(p+1)r(l+1)
H(p7 q) - f_]_ [1 ’X‘ ] dx = qq - r<p+é+q1>

where B(u, v) is the beta function.
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Definition 1 The Eta function for p > —1 and g > 0 is defined as

@ e 2B(l,p+1) B 2r(p+1)r(l+1)
H(p7 q) - f_]_ [1 ’X‘ ] dx = qq - r<p+é+q1>

where B(u, v) is the beta function.
Calculations were performed by the formula

1 ct B
a—1 1— b dx = b’
/0 X ( X ) X b

Exemplary values of the Eta function: H(1,1) =
2,H(—05,1) =4,H(1,0.5) = 2, H(0.5,1) = 3.
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Distribution and density functions
Main properties of introduced distribution \ es and inflection points

Definition 2 The distribution of the random variable X with PDF
given by

f(X;p,q)_[l_Hc’]lj7X€{( L) i -1<p<0 )

H(p,q) [-1,1] ifp=>0

is called the extended easily changeable kurtosis (EECK)
distribution, where p > —1 and g > 0 are the shape parameters.
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Definition 2 The distribution of the random variable X with PDF
given by

f(X;p,q)_[l_Hc’]lj7X€{( L) i -1<p<0 )

H(p,q) [-1,1] ifp=>0

is called the extended easily changeable kurtosis (EECK)
distribution, where p > —1 and g > 0 are the shape parameters.
The EECK(p > —1,q > 0) is symmetric around zero, since
f(x;p,q) =f(—x;p,q).

The EECK(p > —1,qg = 2) is the ECK(a=1,p > —1) (Sulewski,
2022) .
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The variance of the new proposal equals

3 1
(I+pqg)T (5> r <p+ 5)
B+pa)T (%) r <p+ %)

therefore the EECK(p, q) distribution tends to the normal
distribution N (O, ,/uz) with PDF ¢ (x; 0, ,/ug)

H2 =
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iles

Fisher Information Matrix

The variance of the new proposal equals

3 1
(I+pqg)T (5> r <p+ 5)
B+pa)T (%) r <p+ %)

therefore the EECK(p, q) distribution tends to the normal
distribution N (O, \//,TQ) with PDF ¢ (x; 0, \//Tg)

Let M(p, q) be the similarity measure of these distributions. We
have for p > —1, g > 0 (Sulewski, 2020)

M (p,q) = [, min {f(X: P.q), ¢ [x;O, \/(””")r(z)r(f’ﬂ)] }

H2 =

@par (3)r(p+3)
The similarity measure M takes values on (0,1) and if PDFs are
identical then M = 1. For example M (33,1) = 0.871,
M (33,2) = 0.995, M (33,2.5) = 0.961. It has the highest values
for g = 1.96. We have M (50,1.96) = 0.999.
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Pseud
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Main properties of introduced distribution

EECK(p,q)

- -p=30,0=1.96
—N(0,0.096)

@ EECK(p > —1,g > 0) is symmetrical
® The EECK(p = 0,q > 0) is the U(—1,1)
@ The EECK(p > 0,q > 0) is unimodal with mode equals 0
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bimodal with bathtub (anti-mode) shape
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Theorem 1. If X ~ EECK(p > —1,q > 0) with PDF f (x; p, q)
(1) then CDF of X is given by

2F1( paq71+ |X|q)

H(p,q)
where 2F; (a, b, ¢, x) is the Gaussian hypergeometric function.

F(x;p,q) =05+ x
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Theorem 1. If X ~ EECK(p > —1,q > 0) with PDF f (x; p, q)
(1) then CDF of X is given by

2F1( paq71+ |X|q)

H(p,q)
where 2F; (a, b, ¢, x) is the Gaussian hypergeometric function.

F(x;p,q) =05+ x

EECK(p,q) EECK(p,q)

p=10-1

—p=5,=1.96
p=15,0=1.96

- -p=50,q=1.96

—N(00%)

0s 1

Figure: CDF of the EECK(a, p) distribution for various parameter
values
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Theorem 2. The EECK(p > —1, g > 0) distribution with PDF
given by (1) is identifiable in the parameter space v = (p, q).
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Theorem 2. The EECK(p > —1, g > 0) distribution with PDF
given by (1) is identifiable in the parameter space v = (p, q).
Proof Let vi = (p1,91) and vo = (p2, g2). Let us suppose that
fu (x) = f,, (x) for all x from support. This condition implies that

g (1-|x|)"1 _ qa(1—[x]2)??
1 - 1
28(qpit1)  2B(gpot1)

If we apply log to both sides we obtain the system of three
equations

log (%) =0,pylog(1—[x|") = pplog (1 — |x|*) =

B(i,pzﬂ) B
0, log m =0

From the first equation is g1 = g2 and then from the second one is

p1 = p2. The proof is complete.
16 /52
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Theorem 3. Let X ~ EECK(p > —1,q > 0).

@ If p =0 then modal values x,, € [—1, 1] (case of uniform
distribution).

17/52



Distribution and density functions
Main properties of introduced distribution Modes and inflection points
Quantiles

\% nts and Moors' measure
Pseudo-random nun r
Fisher Information N

Theorem 3. Let X ~ EECK(p > —1,q > 0).

@ If p =0 then modal values x,, € [—1, 1] (case of uniform
distribution).

@ If p> 0 then x,, = 0.

17/52



Distribution and density functions
Main properties of introduced distribution Modes and inflection points
Quantiles

M nts and Moors' me
B ndom numb
Fisher Information Ma

Theorem 3. Let X ~ EECK(p > —1,q > 0).

@ If p =0 then modal values x,, € [—1, 1] (case of uniform
distribution).

@ If p> 0 then x,, = 0.

@ If —1 < p < 0 then the EECK(p, q) distribution is pseudo
bimodal with modes x;,(—1), xm(1).

17/52



Distribution and density functions
Main properties of introduced distribution Modes and inflection points
Quantiles

Moments and Moors' m
B ndom e
i Information M

Theorem 3. Let X ~ EECK(p > —1,q > 0).

@ If p =0 then modal values x,, € [—1, 1] (case of uniform
distribution).

@ If p> 0 then x,, = 0.

@ If —1 < p < 0 then the EECK(p, q) distribution is pseudo
bimodal with modes x;,(—1), xm(1).

@ The f(x; p > 0, q) is monotonically increasing on the interval
(—1,0) and monotonically decreasing on the interval (0,1).
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@ If p =0 then modal values x,, € [—1, 1] (case of uniform
distribution).

@ If p> 0 then x,, = 0.

@ If —1 < p < 0 then the EECK(p, q) distribution is pseudo
bimodal with modes x;,(—1), xm(1).

@ The f(x; p > 0, q) is monotonically increasing on the interval
(—1,0) and monotonically decreasing on the interval (0,1).

@ The f(x; —1 < p <0, q) is monotonically decreasing on the
interval (—1,0) and monotonically increasing on the interval
(0,1).
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Theorem 4. Let X ~ ECK(p > —1,q > 0). The inflection points
of the f(x;p,q) forp>1Ag>1lor—-1<p<lAO0<g<1lare
given by means of the following formulas

1 1

1—q>q <1—q>q
xxX=—|\—— ;X=|—"7] . 3
<1—pq 1—pq G)
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Theorem 5. Let X ~ EECK(p > —1,q > 0). The u-th
(0 < u < 1) quantile x, is the solution of the following equation

1 1
(05— u)H(p.q) +2F (—p,q,1+q,|xuyq)xu=o, (4)

where 2F; (a, b, ¢, x) is the Gaussian hypergeometric function and
H(p, q) is the eta function.
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Theorem 5. Let X ~ EECK(p > —1,q > 0). The u-th
(0 < u < 1) quantile x, is the solution of the following equation

1 1
(05— u)H(p.q) +2F (—p,q,1+q,|xuyq>xu=o, (4)

where 2F; (a, b, ¢, x) is the Gaussian hypergeometric function and
H(p, q) is the eta function.

The proposed distribution is symmetrical then x, = —x3_,,
obviously and xp5 = 0.

The quantile x, can be computed by numerical methods.

19/52



Distribution and density functions
Main properties of introduced distribution Modes and inflection points

and Moors' measure
andom number generator

Theorem 6. The k-th (k =0,1,2,...) non-central moments of the
EECK(p > —1, g > 0) distribution are given by

Bes(en) B ls(en)

k qH(p,q) 23(%,p+1)
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Theorem 6. The k-th (k =0,1,2,...) non-central moments of the
EECK(p > —1, g > 0) distribution are given by

Bes(en) B ls(en)

Ok qH(p,q) 23(%,p+1)

Theorem 7. The non-central moments ax(k = 1,3, ...), variance
w2 and kurtosis 7, of the EECK(p > —1, g > 0) distribution are
given by

ar=0(k=1,3,...),u2 =

e’

B (pq+1)(Pq+5)r<p+%> r<p+%>r(3)2
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Figure shows the kurtosis 4, as a function of the shape parameter
p for g = 0.4,0.6,0.8,1 (left) and for ¢ = 2,4,6,8 (right). The
kurtosis, according to the definition, varies in the range [—2, c0).
The smaller g value, the higher kurtosis and the parameter p has a
greater effect on the kurtosis.

EECK(p,q)

Excess kurtosis

Figure: kurtosis 42 as a function of the shape parameter p
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Figure shows the kurtosis 74> as a function of the shape parameter
g for p =10.3,0.5,0.7,0.9 (left) and for p = 0.25,0.75,1,10

(right). For p € (—1,0) the kurtosis tends from —2 to —1.2 when
g — oo. For p > 0 kurtosis tends from oo to —1.2 when g — o0.

R R 4 EECK(p,q)
1 a6
a ] .
32 | —p=0.25
284 ! p=0.75
24 —p=1
2 i
164 4 --p=10

12
08

Excess kurtosis
Excess kurtosis

EECK(p,q)

Figure: kurtosis 42 as a function of the shape parameter g
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Distribution and density functions
Main properties of introduced distribution Modes and inflection points

and Moors' measure
andom number generator

Moors proposed a measure based on quantiles in the form

T — X7/8—X5/8+X3/8—X1/8
X6/8~X2/8
where x, is the solution of quantile equation. The measure T is a
quantile alternative for kurtosis and exists even for distribution for
which no moments exist. The T(p) function decreases for
p(—1,0) and increases for p > 0 mainly for its initial values. The
T(q) function tends to one.

8 —a075  EECK(p,q) > —pors EECK(p,q)
17 a1 .

s
e
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ibution and density functions

Main properties of introduced distribution and inflection points
es
ents and Moors' measure
Pseudo-random number generator
Fisher Information Matrix

Let X ~ EECK(p > —1,9 > 0),R ~ U(0,1). The algorithm for
generating n values of X, using the inverse CDF method, is as
follows:
1. Repeat steps 1.1-1.4 n times:

1.1Let R~ U(0,1),

1.2 Let x = —1+0.01,

1.3 If CDF(x;p,q) < R, then x = x 4 0.01,

1.4 Return x,
It is obviously a universal algorithm for any distribution with
CDF (x; par), where par is the vector of distribution parameters.
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Distribution and density functions
Main properties of introduced distribution Modes and inflection points
Quantiles

Moments and Moors' measure
Pseudo-random number generator
Fisher Information Matrix

The quantile function of the EECK(p, q) does not have an
analytical form, PDF is non-negative on the interval [—1, 1] and
bounded by constant d = f(0; p > 0, g), then we can use the von
Neumann method, which in this case is much faster than the
inverse CDF method.
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ibution and density functions
Main properties of introduced distribution \Y and inflection points
s

ents and Moors' measure
Pseudo-random number generator
Fisher Information Matrix

The quantile function of the EECK(p, q) does not have an
analytical form, PDF is non-negative on the interval [—1, 1] and
bounded by constant d = f(0; p > 0, g), then we can use the von
Neumann method, which in this case is much faster than the
inverse CDF method.
The algorithm for generating n values of X, using the von
Neumann method, is as follows:
1. If =1 < p < 0 then use the inverse CDF method
2. 1f p>0then d =1 (0;p,q)
3. Repeat steps 3.1-3.3 n times:

31Let Ry ~U(-1,1),R, ~ U(0,d),

3.2 If f(R1; p,q) < R> then goto Step 3.1 else x = Ry

3.3 Return x,
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Distribution and density functions
Main properties of introduced distribution Modes and inflection points
Quantiles

Moments and Moors'
Pseudo-random numb
Fisher Information Ma

Theorem 9. The Fisher information matrix /; j(i,j = 1,2) for the
EECK(p > —1, g > 0) distribution is given by

hy =
[A—B+ﬁ(p)—ﬁ(p+§)]2+w1(p+1)—\u1 <p+%—|—1)

7 N

he =l = F(p+1)r (1+1)
e nfio A(e)] | rlerin)
* A pr(p+1);(%+1)
L (C=A? 2(C-AN (p+1+41)  paP(pa+1)r(2-1)r(p+1)
27 grerr(ia)  e-nea-ur(e-1)r(3)

where H (z) = 3%_, % is the harmonic function, W, (z) is the n*
derivative of the digamma function

W) A=V (p+Li+1),B=V(p+1),C=v(L+1)
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Maximum likelihood estimation

Let x{', x5, ..., x; be a random sample size n from the
EECK(p > —1, g > 0) distribution. Our target is to estimate the
unknown values of the parameters p, g.
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Maximum likelihood estimation

Let x{', x5, ..., x; be a random sample size n from the

EECK(p > —1, g > 0) distribution. Our target is to estimate the
unknown values of the parameters p, g.

The likelihood function is given by

M(p+i+1
- r(ﬁ)r(i) [T, (1 - b 1)
then the log-likelihood function is defined as
/= nln [r (p+§+1)] —nIn[2l (p+1)] - nln [r (§+1)] +
pizg In (1= 1x1%)

L=TI"y f (x5 pq)

and
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Maximum likelihood estimation

Let x{', x5, ..., x; be a random sample size n from the

EECK(p > —1, g > 0) distribution. Our target is to estimate the
unknown values of the parameters p, g.

The likelihood function is given by

1
L=T1I f(xip.q) = m [T7-: (1= |x7[9)P
then the log-likelihood function is defined as
/= nln [r (p+§+1)] —nIn[2l (p+1)] - nln [r (§+1)] +
Py In (1= Ix(%)
and
g~y (p—l—%—i—l) AW (p+ 1)+ In(1—|xF|9) =0
d—2v(pti+1)+av (i) T_|XX‘|1:0

where W is the digamma function. 27 /52



Maximum likelihood estimation

The maximum likelihood estimates (MLEs) are solutions of the
system equations. We have

1
me —x719) \Il(p+1)—\|1<p+q+1), (5)

1 1 3 xF|et
W(—i—l)—\U(p—i——l—l):—M. (6)
q 1—[x]

q
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Maximum likelihood estimation

The maximum likelihood estimates (MLEs) are solutions of the
system equations. We have

1
me —x719) \Il(p+1)—\|1<p+q+1), (5)

1 1 x|97!
\U<+1>—\U<p++1> %. (6)
q q x|
Solving this system equations with numerical method we have

obtain p, §. We can also maximize the log-likelihood function to
obtain the MLEs of the p, g parameters.
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Maximum likelihood estimation

The simulation study was performed with 103 samples using
sample sizes of 100, 150, 200. The samples were drawn from the
EECK(p,3), where p=1,2,3 (see Table left) and from the
EECK(3,q), where g = 1,2, 3 (see Table right).
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Maximum likelihood estimation

The simulation study was performed with 103 samples using
sample sizes of 100, 150, 200. The samples were drawn from the
EECK(p,3), where p=1,2,3 (see Table left) and from the
EECK(3,q), where g = 1,2, 3 (see Table right).

p n - b - i q n - b - q
Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 0555  2.820 | 0.443 3.593 100 0.266 5510 | 0485 3.361
1 150 0296  1.802 0.186 2.992 1 150 0.011 1.202 | 0231 2169
200 0110 1172 | -0.081 2.279 200 -0.125  0.320 | -0.034 1.290
100 0965 4.408 | 0379 2.313 100 0.173 1.168 | 0531  3.600
2 150 0724 2739 | 0339 1.908 2 150 0.046 0873 [ 0.176  3.234
200 0338 1468 | 0.110 1.397 200 -0.020  0.711 | -0.044 2.729
100 1.255 3.875 0.336 1.701 100 0.264 2.584 0.439 5.733
3 150 0.892 3.126 0.269 1.441 3 150 0.149 1.586 0.209 5.283
200 0712 2289 | 0.259 1.261 200 0.047 1.005 | 0.029 4.544
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

As it was mentioned in Introduction, the shape parameter of the
EECK distribution cannot be represented as a function of 7,, as is
for the ECK distribution (Sulewski, 2022). Recall, however, that
the ECK kurtosis takes values on interval (—2,0), while the EECK
kurtosis has values on interval [-2, 00). Using e.g. Mathcad, you
can easily calculate the argument of a function knowing its value.
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

As it was mentioned in Introduction, the shape parameter of the
EECK distribution cannot be represented as a function of 7,, as is
for the ECK distribution (Sulewski, 2022). Recall, however, that
the ECK kurtosis takes values on interval (—2,0), while the EECK
kurtosis has values on interval [-2, 00). Using e.g. Mathcad, you
can easily calculate the argument of a function knowing its value.
Let x(1), X(2); ---» X(n) be an ordered random sample of size n.
Seven GoFTs were selected to be subjects of the Monte Carlo
simulation. Five of them as being very popular GoFTs have been
implemented in the R software. These tests are: Shapiro-Wilk
(SW), Kolmogorov-Smirnov (KS), Cramer-von Mises (CVM),
Anderson-Darling (AD) and Shapiro - Francia (SF). Two tests not
implemented yet, probably for their novelty, are: H, (Torabi, 2016)
and LF,, (Sulewski, 2020) tests.
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

The H, test statistic is defined as

X(;)—Y
Lo 1+q>< ~%,0,1) o 1\2
Ho==S"h . h(x) =
=0 =) @
=

where X and s? are the sample mean and sample variance,
respectively.
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

The H, test statistic is defined as

X(;)—Y

Lo 1+q>< ~%,0,1) o 1\2

=iy S = (5) @
i=1 n

where X and s? are the sample mean and sample variance,

respectively.

The LF,, test statistic is given by

|- _ X(,-)—Y -
n_a_B+1 ¢)< S 707]-)‘7(047621)'
(8)

If an alternatively distribution is both symmetric and of negative

(positive) kurtosis @ = 3 =0 (& = 3 = 1) are recommended.

LF,, = max
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

Figure (left) shows PDF of the N (0,0.096) and EECK(p, 1.96)
distributions. For the presented values of the shape parameters, an
kurtosis of the EECK is negative. If p increases, the similarity

measure also increases. Figure (right) shows PDF of the
N (0,0.259) and EECK(p,1.3) distributions.

3
1 —p=10, M=0639 —p=7, M=0814
4\ =20, M=0.786 p=6,M=0857
I p=30, M=0879 P=5, M=
LA -~ peto, M=0547 <t =062
P 3 p=50,M=0998 p=367, M=0971
\ —-N(0.0.096), M=1 —-N(0.0:259), M=1
. )
g |
iz
4
fis
\
A1 W
i %
7 os \
i \
<, X x
1 075 05 025 0 025 05 075 1
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

Table 2 (Table 3) shows the modeling of negative (positive)
kurtosis, i.e. for a given value of 7, of the EECK(p,1.96)
(EECK(p,1.3)) the value of the shape parameter p is caclulated.

EECK(p,1.96) N(0,0.096)

Tz -1 -0.75 -0.5 -0.4 -0.3 -0.2 -0.1 -0.05 -0.025 1]

P 049 1.451 33 4.627 6731 10.58 19.882 32.188 45.316
Source: Own material

Table: Modeling of negative kurtosis 7,. EECK(p, 1.96)
EECK(p,1.3) N(0,0.259)

Fa 0.5 0.4 0.3 0.2 01 0.05 0.025 0.01 0.005 0.001 1]

1] 8.261 6.95 5.891 5.018 4.286 3.963 3.81 3721 3.693 3.669

Source: Own material

Table: Modeling of positive kurtosis 7,. EECK(p,1.3)
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

Phase 1: In this phase the aim is to investigate to what degree
selected GoFTs are able to distinct between the normal and
proposed distributions. In other words the aim is to determine
powers of GoFTs being under discussion when samples come from
EECK(p, q) general populations. Critical values cvp o5 ascribed to
GoFTs (where ae = 0.05 is the test significance level) were
estimated with the Monte Carlo method.

n 20 40 60

s 0.096 0.259 0.096 0.259 0.096 0.259
LF 0.19177 0.13841 0.11385
CVM 0.12278 0.12445 0.12490
AD 0.72300 0.73751 0.74215
SW 0.98287 0.98860 0.99140

SF 0.98464 0.99003 0.99248

Haq 0.00077 0.00038 0.00025
LFm 0.16195 0.12388 0.10450
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

72
-1 -075 05 —-04 -03 —02 -01 —005 -0.025 0

GoFT

P

n 049 1451 33 4627 6731 10.58 19.882 32.188 45316 -
20 0063 0.046 0044 0045 0.045 0048 0.048 0.049 0.050 0.050
LF 40 0.099 0.058 0.048 0045 0.047 0047 0.049 0.049  0.050 0.050
60 0.148 0.074 0.052  0.049 0.047 0.047 0.049 0.051 _ 0.050 0.051
20 0074 0.047 0044 0042 0.044 0047 0.047 0.049 0.050 0.050
CVM 40 0.144 0.069 0049 0045 0.045 0046 0.048 0.049 0.049 0.050
60 0237 0.095 0.055 0049 0.046 0.046 0.049 0.049  0.049 0.051
20 0.079 0.047 0.041 0040 0.042 0045 0.047 0.048  0.050 0.050
AD 40 0.178 0.075 0.048 0.043 0.044 0044 0.047 0.049 0.048 0.050
60 0311 0.109 0057 0048 0.045 0045 0.048 0.049  0.048 0.050
20 0083 0.043 0036 0038 0.039 0041 0.045 0048 0.048 0.049
SW 40 0223 0.071 0040 0036 0.036 0038 0.043 0.046  0.049 0.051
60 0429 0.115  0.047 0.039 0.037 0.037 0.043  0.045  0.046 0.051
20 0034 0.022 0.025 0.030 0.033 0039 0.045 0.049 0.050 0.049
SF 40 0.083 0.025 0019 0021 0.025 0032 0.041 0045 0.050 0.052
60 0.195 0.040 0019 0020 0.023 0.028 0.040  0.045  0.047 0.051
20 0075 0.049 0043 0044 0.044 0046 0.047 0.048 0.049 0.049
Ha, 40 0.154 0.074 0051 0046 0.047 0046 0.048 0.049 0.049 0.051
60 0259 0.105 0.059 0053 0.049 00350 0.051 0.051 _ 0.050 0.053
20 0082 0.056 0.050 0049 0.048 0050 0.049 0.049  0.051 0.051
LFn 40 0125 0.073 0054 0050 0051 0049 0.051 0.050 0.050 0.051
60 0.181 0.087 0059 0053 0.051 0049 0.050 0.051 0.050 0.051

Table: Powers of tests at aw = 0.05, when the EECK(p, 1.96) is the
actual population distribution. The case of negative kurtosis values
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

Yz
2 2
GoFT 0.5 04 03 02 0.1 005 0.025 001 0.005 0.001 0

P

n 8261 695 5801 5018 4286 3963 3.810 3.721 3.693  3.669 -
20 0072 0.069 0064 0.060 0.055 0.056 0.053 0054 0.054 0.053 0.050
LF 40 0.089 0.081 0074 0.070 0.061 0.060 0.058 0.056 0.055 0.057 0.051
60 0.105 0.094 0084 0.075 0.065 0.062 0.060 0.060 0.060 0.060 0.052
20 0081 0.077 0071 0.063 0.059 0.057 0.056 0056 0.054 0.055 0.052
CVM _40 001 0.091 0080 0.073 0064 0.060 0.059 0056 0.056 0.056 0.049
60 0122 0.108 0.093 0.082 0.068 0.063 0.062 0.061 0.060 0.061 0.051
20 0082 0.077 0071 0.062 0.057 0.054 0.055 0054 0.052 0.053 0.052
AD 40 0101 0.090 0079 0.071 0.062 0.058 0.056 0.054 0.053 0.053 0.049
60 0124 0.107 0092 0.081 0.066 0.061 0.060 0.058 0.057 0.059 0.051
20 0081 0.073 0.067 0.060 0.052 0051 0.049 0048 0.047 0.050 0.050
SW 40 0098 0.085 0.074 0.060 0.052 0.047 0.045 0044 0.044 0.048 0.050
60 0114 0.095 0.079 0.064 0.050 0.045 0.044 0.042 0.042 0.046 0.051
20 0102 0.092 0.081 0.072 0.062 0.058 0.055 0.055 0.052 0.057 0.049
SF 40 0127 0.111 0093 0.074 0.061 0.053 0.049 0048 0.049 0.053 0.049
60 0.148 0.125 0.102 0.078 0.058 0.050 0.047 0.045 0.044 0.051 0.052
20 0078 0.073 0068 0.061 0058 0.056 0.055 0.054 0.053 0.055 0.052
Ha 40 0.094 0.084 0076 0.069 0.061 0.058 0.056 0.055 0.054 0.054 0.049
60 0.118 0.105 0.091 0.080 0.067 0.063 0.061 0.060 0.059 0.061 0.053
20 0082 0.078 0073 0.066 0.061 0.060 0.057 0.057 0.057 0.057 0.050
LFn _40 0100 0091 0.082 0076 0.066 0.064 0.062 0.060 0.059 0.060 0.050
60 0116 0.104 0092 0.081 0.069 0.066 0.064 0.064 0.063 0.063 0.051

Table: Powers of tests at v = 0.05, when the EECK(p, 1.3) is the
actual population distribution. The case of positive kurtosis values
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

The conclusions from tables are very interesting.
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@ For n =20, the LF, CvM, AD, SW, Hn tests detect only
¥ = —1, LFm - 7, = —0.75; LFm, SF tests detect even

@ For n =40, the LF, CvM, AD, SW, Hn and LFm tests detect
only 7, = —0.75; LF, CvM, AD, Hn, and LFm tests detect
even 7, = 0.001.

37/52



Comparison of goodness-of-fit tests

Application Fitting distributions to data

The conclusions from tables are very interesting.

@ For n =20, the LF, CvM, AD, SW, Hn tests detect only
¥ = —1, LFm - 7, = —0.75; LFm, SF tests detect even

@ For n =40, the LF, CvM, AD, SW, Hn and LFm tests detect
only 7, = —0.75; LF, CvM, AD, Hn, and LFm tests detect
even 7, = 0.001.

@ For n=60, the AD, Hn and LFm tests detect only 7, = —0.5;
LF and CVM tests detect only 7, = —0.75; LF, CvM, AD,
Hn, and LFm tests detect even 7, = 0.001.

In Phase 1, we showed that the considered GoFTs detect positive
kurtosis better than negative one.
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

Phase 2. In this phase the aim is to investigate to what degree an
undetected kurtosis impacts the performance of two basic tests
related to parameters of the Normal distribution, namely Student t
test and Fisher — Snedecor F test.
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

Phase 2. In this phase the aim is to investigate to what degree an
undetected kurtosis impacts the performance of two basic tests
related to parameters of the Normal distribution, namely Student t
test and Fisher — Snedecor F test.

Let X1,1, X1,25 +-+s X1,n and X215 X225 -5 X2 be two samples of sizes n
drawn from particular general populations. Let us remember that t
and F test statistics have the following forms:

—_ = ) 2
f= M2 p_Sa (9)

’ 2
1/ s21+52 S%2
n

where X7, x> are the sample means and s,1, sy» are the sample
standard deviations.
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

The course of action was as follows:
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

The course of action was as follows:

© m = 10° pairs of samples both of size n = 60 were drawn
from EECK(4,627,1.96) (for negative kurtosis) and
EECK(3.669,1.3) (for positive kurtosis) general populations.

ese pairs of samples were consecutively, converted into
Q@ Th f I tively ted int
pairs of t, statistics and F, statistics, v =1,2,...,m.

© Sets of values of t, and Fv statistics were stored in two
matrices named T and F.

© The matrices were sorted in ascending order and served to
determine two empirical CDFs namely ©; (fv) and ©f (Fv>

© Probability papers were employed to check whether the above
empirical CDFs fit the Student and Fisher-Snedecor

distributions.
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

Figures show empirical CDFs plotted on the Student and Snedecor
probability papers, when samples were drawn from
EECK(4,627,1.96) and EECK(3.669,1.3), appropriately. These
probability papers were constructed in the same way as the Normal
probability is constructed.

=60

Figure: Empirical CDFs plotted on the Student and Snedecor
probability paper. Case of negative kurtosis values
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

tquantile function

Figure: Empirical CDFs plotted on the Student and Snedecor
probability paper. Case of positive kurtosis values

It turns out that the empirical distribution in question perfectly fit
straight lines that relevant theoretical distributions. Thus, we can
conclude that Student and Fisher-Snedecor tests may be applied

even as population distributions are of negative or positive kurtosis.
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

Symmetric distributions have limited use in fitting the distributions
to data (e.g. normal distribution). However, the situation looks
much better when we use their mixture (e.g. compound normal
distribution).
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

Symmetric distributions have limited use in fitting the distributions
to data (e.g. normal distribution). However, the situation looks
much better when we use their mixture (e.g. compound normal
distribution).

For the purposes of this subsection, we extend the domain of the
EECK(p, q) from [—1,1] to [—a, a](a € R). PDF of the modified
EECK(p, q) distribution denoted as EECK?2(x, a, p, q) has the form

()T
EECK2(x;a,p,q) = 2 1= () T
(-a,a) if —1<p<0
XE{[—E),Q] |fp20
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

We present real data examples to demonstrate a flexibility of the
EECK(p > —1,q > 0) distribution in the mixed variant. PDF of
the compound EECK (CEECK) distribution is given by

CEECK (x; a, p1, G1, P2, G2, w) =
wEECK2(x; a, p1,q1) + (1 — w) EECK2(x; a, p2, 42)
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

We present real data examples to demonstrate a flexibility of the
EECK(p > —1,q > 0) distribution in the mixed variant. PDF of
the compound EECK (CEECK) distribution is given by

CEECK (x; a, p1, G1, P2, G2, w) =
wEECK2(x; a, p1,q1) + (1 — w) EECK2(x; a, p2, 42)

The estimation of the model parameters is carried out by the
maximum likelihood method. To avoid local maxima of the
logarithmic likelihood function, the optimization routine is run 100
times with several different starting values that are widely
scattered in the parameter space.
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Application Fitting distributions to data

We present real data examples to demonstrate a flexibility of the
EECK(p > —1,q > 0) distribution in the mixed variant. PDF of
the compound EECK (CEECK) distribution is given by

CEECK (x; a, p1, G1, P2, G2, w) =
wEECK2(x; a, p1,q1) + (1 — w) EECK2(x; a, p2, 42)

The estimation of the model parameters is carried out by the
maximum likelihood method. To avoid local maxima of the
logarithmic likelihood function, the optimization routine is run 100
times with several different starting values that are widely
scattered in the parameter space.

The KS GoFT was used for model fitting, while the AIC, BIC and
HQIC were used for model comparisons.
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

The first data set presents temperature dynamics of beaver Castor
canadensis in north-central Wisconsin (Reynolds, 1994). Body
temperature was measured by telemetry every 10 minutes from one
period of less than a day. The data consists of 114 observations of
the variable measured body temperature in degrees Celsius and are
available in the R software with code beaverl[3].
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The first data set presents temperature dynamics of beaver Castor
canadensis in north-central Wisconsin (Reynolds, 1994). Body
temperature was measured by telemetry every 10 minutes from one
period of less than a day. The data consists of 114 observations of
the variable measured body temperature in degrees Celsius and are
available in the R software with code beaverl[3].

The second data set contains statistics, in arrests per 100,000
residents for assault in each of the 50 US states in 1973 (McNeil,
1977). The data consisting of 50 observations are available in the
R software with code USArrests[2].
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

The models selected for comparison with the CEECK are:
@ the compound ECK (CECK):

2y 2\
(1_82) (1_82)

feeck (X) = wagpe iy T (1 — @) 380500
@ the compound normal (CN):

fon (x) = wo (x; a1, b1) + (1 — w) ¢ (x; a2, bo)
@ the compound Laplace (CL):

feL (x) = 2b exp [exp( |x— all)} + 2b2 exp [exp( |x 232\)]
@ the compound Cauchy (CC):

o= )] e )
@ the compound logistic (CLOG):

wexnl X=21) (1—w) exp( X=2) 45 /52




Comparison of goodness-of-fit tests

Application Fitting distributions to data

Model MLEs - AlC BIC Halc KS(p-value)

CEECK  @=4.151,51=2.039,§1=0.700, 371,5=0.660 154.785 321570 337.987 328.233 0.040(0.978)

CECK r 155.1654 318331 329.275 322773 0.041(0.964)
CN .906,5=0.026 154.745 319.489 333.170 325.041 0.084(0.324)
CcL .663,0=0.201 155393 320786 334467 326338 0.087(0.277)
cc .369,5=0.294 163.386 336771 350.452 342324 0.103(0.142)
CLOG 1=0.0455,=0.492,ii» .026,5=0.975 152.318 314.636 328.317 320.188 0.050(0.877)

Source: Own material

Table: Results of estimation for the first data set
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Model MLEs - AlC BIC Halc KS(p-value)

CEECK  @=4.151,51=2.039,§1=0.700, 371,5=0.660 154.785 321570 337.987 328.233 0.040(0.978)

CECK r 155.1654 318331 329.275 322773 0.041(0.964)
CN .906,5=0.026 154.745 319.489 333.170 325.041 0.084(0.324)
CcL .663,0=0.201 155393 320786 334467 326338 0.087(0.277)
cc .369,5=0.294 163.386 336771 350.452 342324 0.103(0.142)
CLOG 1=0.0455,=0.492,ii» .026,5=0.975 152.318 314.636 328.317 320.188 0.050(0.877)

Source: Own material

Table: Results of estimation for the first data set

Model MLEs l AIC BIC HQIC  KS{p-value)
CEECK 63951 139.901 151373 144270 0.088(0.687)
CECK 70964 149929 157.577 152841 0.136(0.215)
N 1=-0.637.5;=0.567,i2=1. . 4 66001 142002 151562 145643 0.072(0.853)
cL #1=0.999,5,=0.415 66965 143930 153490 147570 0.061(0.944)
cc 1=-0.650,61=0.404,32=1.025 ) 73122 156244 165805 159885 0.081(0.767)
CLOG 1=-0.617,5;=0.355,32=1.099,5,=0.262,5=0.648 66684 143369 152929 147009 0.072(0.880)

Source: Own material

Table: Results of estimation for the second data set
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Comparison of goodness-of-fit tests

Application Fitting distributions to data

Figure 7 presents histograms, estimated PDFs of the analyzed
models. The CEECK model is distinguished in terms of the KS
GoFT for the first data set. This model has the smallest values of
the —/, AIC, BIC and HQIC.
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Figure: Histograms and estimated PDF of analyzed models for first
(left) and second (right) data sets
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Conclusions

@ The article presents the extended easily changeable kurtosis
(EECK) distribution, the special cases of which are the ECK,
uniform and triangle distributions.
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Conclusions

The article presents the extended easily changeable kurtosis
(EECK) distribution, the special cases of which are the ECK,
uniform and triangle distributions.

The new proposal tends to the normal distribution.

The EECK, like the ECK, belongs to the family of symmetric,
unimodal distributions, defined in the finite domain with
kurtosis values on infinite interval.

the new proposal can be extremely useful when we want to
seamlessly test GoFT's ability to detect deviations from
normality by modeling of negative or positive kurtosis.

Student and Fisher-Snedecor tests may be applied even as
population distributions are of negative or positive kurtosis.
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Conclusions

@ Real data example demonstrates that the EECK(p, q)
distribution in the mixed variant is flexible and competitive
model that deserves to be added to the existing distributions
in data modeling.
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Conclusions

@ Real data example demonstrates that the EECK(p, q)
distribution in the mixed variant is flexible and competitive
model that deserves to be added to the existing distributions
in data modeling.

@ The information presented in the article shows that the
proposed distribution deserves to be added to the symmetric
distribution family.
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