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Instead of kurtosis γ2, the paper analyzes the kurtosis
γ2 = γ2 − 3, which can be positive or negative.
For simplicity, the kurtosis of the normal distribution is
zero!!!

Symmetric distributions do not form such a big family as
asymmetric distributions.

There is a group of asymmetric distributions, which are
symmetrical for certain parameter values, e.q. the truncated
normal, Birnbaum-Saunders, skew-normal, beta, two-piece
normal and two-piece power normal distributions.
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We can divide symmetric distributions into eleven groups, namely:

1 distribution with one mode (normal, Laplace, logistic),

2 distribution with at most two modes (extended normal,
extended t, extended Laplace, plasticizing component)

3 distribution with two modes (bimodal exponential
power,bimodal power normal)

4 distribution with an undefined kurtosis (Cauchy,Voigt),

5 distribution with a complicated kurtosis formula (bimodal
power normal, Tukey, von Mises),

6 distribution with a constant kurtosis value (uniform,
hyperbolic secant, semicircle),
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7 distribution with discrete kurtosis values (extended t, Bates,
Irwin-Hall),

8 distribution with kurtosis values on infinite interval
(generalized normal, normal-exponential-gamma,
U-quadratic),

9 distribution with kurtosis values on finite interval (ECK,
Q-gaussian, von Mises, U-power),

10 distribution with an existing discontinuous function
p = f (γ2), where p is the shape parameter (t, Bates,
Irwin-Hall).

11 distribution with an existing continuous function p = f (γ2),
where p is the shape parameter (Q-gaussian. ECK).

5 / 52



Introduction
Main properties of introduced distribution

Maximum likelihood estimation
Application
Conclusions
References

7 distribution with discrete kurtosis values (extended t, Bates,
Irwin-Hall),

8 distribution with kurtosis values on infinite interval
(generalized normal, normal-exponential-gamma,
U-quadratic),

9 distribution with kurtosis values on finite interval (ECK,
Q-gaussian, von Mises, U-power),

10 distribution with an existing discontinuous function
p = f (γ2), where p is the shape parameter (t, Bates,
Irwin-Hall).

11 distribution with an existing continuous function p = f (γ2),
where p is the shape parameter (Q-gaussian. ECK).

5 / 52



Introduction
Main properties of introduced distribution

Maximum likelihood estimation
Application
Conclusions
References

7 distribution with discrete kurtosis values (extended t, Bates,
Irwin-Hall),

8 distribution with kurtosis values on infinite interval
(generalized normal, normal-exponential-gamma,
U-quadratic),

9 distribution with kurtosis values on finite interval (ECK,
Q-gaussian, von Mises, U-power),

10 distribution with an existing discontinuous function
p = f (γ2), where p is the shape parameter (t, Bates,
Irwin-Hall).

11 distribution with an existing continuous function p = f (γ2),
where p is the shape parameter (Q-gaussian. ECK).

5 / 52



Introduction
Main properties of introduced distribution

Maximum likelihood estimation
Application
Conclusions
References

7 distribution with discrete kurtosis values (extended t, Bates,
Irwin-Hall),

8 distribution with kurtosis values on infinite interval
(generalized normal, normal-exponential-gamma,
U-quadratic),

9 distribution with kurtosis values on finite interval (ECK,
Q-gaussian, von Mises, U-power),

10 distribution with an existing discontinuous function
p = f (γ2), where p is the shape parameter (t, Bates,
Irwin-Hall).

11 distribution with an existing continuous function p = f (γ2),
where p is the shape parameter (Q-gaussian. ECK).

5 / 52



Introduction
Main properties of introduced distribution

Maximum likelihood estimation
Application
Conclusions
References

7 distribution with discrete kurtosis values (extended t, Bates,
Irwin-Hall),

8 distribution with kurtosis values on infinite interval
(generalized normal, normal-exponential-gamma,
U-quadratic),

9 distribution with kurtosis values on finite interval (ECK,
Q-gaussian, von Mises, U-power),

10 distribution with an existing discontinuous function
p = f (γ2), where p is the shape parameter (t, Bates,
Irwin-Hall).

11 distribution with an existing continuous function p = f (γ2),
where p is the shape parameter (Q-gaussian. ECK).

5 / 52



Introduction
Main properties of introduced distribution

Maximum likelihood estimation
Application
Conclusions
References

The ECK (a > 0, p > −1) is unimodal distribution defined in the
finite domain with p = f (γ2) =

−5γ2−6
2γ2

and can be used to model
kurtosis γ2 ∈ (−2, 0).

The kurtosis of the EECK distribution is γEECK2 ≥ −2, so this
distribution, like

the generalized normal GN (γGN2 ≥ −1.2
(
γGN2 ̸= 0

)
),

the normal-exponential-gamma NEG (γNEG2 > 0)

the Tukey T defined in infinite domain (γT2 > 0),

belongs to the family of symmetrical, unimodal distributions with
kurtosis values on infinite interval.
PDF of the NEG has a complicated form, and the analytical
formula for kurtosis does not exist.
PDF of the T has a simple, closed form for a few exceptional
values of the shape parameter, e.g. we get, respectively, for
λ = {1, 0} uniform and logistic distributions.
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The analytical formulas for kurtosis of the EECK, GN and T
distributions are respectively:

γEECK2 =
Γ
(
1
q

)
Γ
(
5
q

)
Γ
(
p+ 3

q
+1

)2
Γ
(
3
q

)2
Γ
(
p+ 1

q
+1

)
Γ
(
p+ 5

q
+1

) − 3 (p > −1, q > 0),

γGN2 = Γ
(
5
β

)
Γ
(
1
β

)
Γ
(
3
β

)−2
− 3 (β > 0)

γT2 =
Γ(2λ+1)2[3Γ(2λ+1)2−4Γ(λ+1)Γ(3λ+1)+Γ(4λ+1)]
(8λ+1)(2λ+1)−2Γ(4λ+1)[Γ(λ+1)2−Γ(2λ+1)]

2 − 3 (−0.25 < λ)
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Figure 1 shows the kurtosis as a function of the shape parameters
p > −1, β > 0 and λ ∈ (−0.25, 0). The EECK and GN
distributions can be used to model the negative and positive
kurtosis. The negative values of kurtosis for the EECK and GN
distributions are available on [−2, 0] and [−1.2, 0), respectively. It
is worth mentioning that the EECK is defined in the finite domain
whereas GN and T are defined in infinite domain.
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Figure: kurtosis as a function of shape parameter
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The new proposal can be extremely useful when you want to
seamlessly test the goodness-of-fit tests (GoFTs) ability to detect
deviations from normality caused by a negative and positive
kurtosis.

Special cases of the EECK (p > −1, q > 0) distribution are: the
uniform, triangle and obviously ECK (a > 0, p > −1). The
EECK (p > −1, q > 0) tends to the normal distribution
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Table: Symmetric distributions with range of kurtosis and modality
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Distribution and density functions
Modes and inflection points
Quantiles
Moments and Moors’ measure
Pseudo-random number generator
Fisher Information Matrix

Definition 1 The Eta function for p > −1 and q > 0 is defined as

H (p, q) =
∫ 1
−1 [1− |x |q]p dx =

2B
(
1
q
,p+1

)
q =

2Γ(p+1)Γ
(
1
q
+1

)
Γ
(
p+ 1

q
+1

)
where B(u, v) is the beta function.

Calculations were performed by the formula∫ 1
0

xa−1
(
1− xb

)c−1
dx =

B
(
a
b , c

)
b

Exemplary values of the Eta function: H (1, 1) = 1,H (0, 1) =
2,H (−0.5, 1) = 4,H (1, 0.5) = 2

3 ,H(0.5, 1) = 4
3 .
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Definition 2 The distribution of the random variable X with PDF
given by

f (x ; p, q) =
[1− |x |q]p

H (p, q)
, x ∈

{
(−1, 1) if − 1 < p < 0
[−1, 1] if p ≥ 0 (1)

is called the extended easily changeable kurtosis (EECK)
distribution, where p > −1 and q > 0 are the shape parameters.

The EECK (p > −1, q > 0) is symmetric around zero, since
f (x ; p, q) = f (−x ; p, q).
The EECK (p > −1, q = 2) is the ECK (a = 1, p > −1) (Sulewski,
2022) .
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The variance of the new proposal equals

µ2 =
(1+ pq) Γ

(
3
q

)
Γ
(
p + 1q

)
(3+ pq) Γ

(
1
q

)
Γ
(
p + 3q

)
therefore the EECK (p, q) distribution tends to the normal
distribution N

(
0,
√
µ2

)
with PDF ϕ

(
x ; 0,

√
µ2

)

Let M(p, q) be the similarity measure of these distributions. We
have for p > −1, q > 0 (Sulewski, 2020)

M (p, q) =
∫ 1
−1min

{
f (x ; p, q) , ϕ

[
x ; 0,

√
(1+pq)Γ

(
3
q

)
Γ
(
p+ 1

q

)
(3+pq)Γ

(
1
q

)
Γ
(
p+ 3

q

)
]}

The similarity measure M takes values on (0,1) and if PDFs are
identical then M = 1. For example M (33, 1) = 0.871,
M (33, 2) = 0.995, M (33, 2.5) = 0.961. It has the highest values
for q = 1.96. We have M (50, 1.96) = 0.999.
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Theorem 1. If X ∼ EECK (p > −1, q > 0) with PDF f (x ; p, q)
(1) then CDF of X is given by

F (x ; p, q) = 0.5+ x
2F1

(
−p, 1q , 1+

1
q , |x |

q
)

H (p, q)
(2)

where 2F1 (a, b, c, x) is the Gaussian hypergeometric function.
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Figure: CDF of the EECK (a, p) distribution for various parameter
values
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Theorem 2. The EECK (p > −1, q > 0) distribution with PDF
given by (1) is identifiable in the parameter space v = (p, q).

Proof Let v1 = (p1, q1) and v2 = (p2, q2). Let us suppose that
fv1 (x) = fv2 (x) for all x from support. This condition implies that

q1(1−|x |q1 )p1

2B
(
1
q1

,p1+1
) = q2(1−|x |q2 )p2

2B
(
1
q2

,p2+1
)

If we apply log to both sides we obtain the system of three
equations

log
(
q1
q2

)
= 0, p1 log (1− |x |q1)− p2 log (1− |x |q2) =

0, log

[
B
(
1
q2

,p2+1
)

B
(
1
q1

,p1+1
)
]
= 0

From the first equation is q1 = q2 and then from the second one is
p1 = p2. The proof is complete.
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Theorem 3. Let X ∼ EECK (p > −1, q > 0).

If p = 0 then modal values xm ∈ [−1, 1] (case of uniform
distribution).

If p > 0 then xm = 0.

If −1 < p < 0 then the EECK (p, q) distribution is pseudo
bimodal with modes xm(−1), xm(1).

The f (x ; p > 0, q) is monotonically increasing on the interval
(−1, 0) and monotonically decreasing on the interval (0, 1).

The f (x ;−1 < p < 0, q) is monotonically decreasing on the
interval (−1, 0) and monotonically increasing on the interval
(0, 1).
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Theorem 4. Let X ∼ ECK (p > −1, q > 0). The inflection points
of the f (x ; p, q) for p > 1 ∧ q > 1 or −1 < p < 1 ∧ 0 < q < 1 are
given by means of the following formulas

x1 = −
(
1− q

1− pq

) 1
q

, x2 =

(
1− q

1− pq

) 1
q

. (3)
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Theorem 5. Let X ∼ EECK (p > −1, q > 0). The u-th
(0 < u < 1) quantile xu is the solution of the following equation

(0.5− u)H (p, q) + 2F1

(
−p,
1
q
, 1+

1
q
, |xu|q

)
xu = 0, (4)

where 2F1 (a, b, c, x) is the Gaussian hypergeometric function and
H(p, q) is the eta function.

The proposed distribution is symmetrical then xu = −x1−u,
obviously and x0.5 = 0.
The quantile xu can be computed by numerical methods.
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Theorem 6. The k-th (k = 0, 1, 2, ...) non-central moments of the
EECK (p > −1, q > 0) distribution are given by

αk =
[1+(−1)k ]B

(
k+1
q

,p+1
)

qH(p,q) =
[1+(−1)k ]B

(
k+1
q

,p+1
)

2B
(
1
q
,p+1

)

Theorem 7. The non-central moments αk(k = 1, 3, ...), variance
µ2 and kurtosis γ2 of the EECK (p > −1, q > 0) distribution are
given by

αk = 0 (k = 1, 3, ...) , µ2 =
(1+pq)Γ

(
3
q

)
Γ
(
p+ 1

q

)
(3+pq)Γ

(
1
q

)
Γ
(
p+ 3

q

)
γ̄2 =

(pq+3)2Γ
(
1
q

)
Γ
(
5
q

)
Γ
(
p+ 3

q

)2
(pq+1)(pq+5)Γ

(
p+ 1

q

)
Γ
(
p+ 5

q

)
Γ
(
3
q

)2 − 3
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Figure shows the kurtosis γ̄2 as a function of the shape parameter
p for q = 0.4, 0.6, 0.8, 1 (left) and for q = 2, 4, 6, 8 (right). The
kurtosis, according to the definition, varies in the range [−2,∞).
The smaller q value, the higher kurtosis and the parameter p has a
greater effect on the kurtosis.
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Figure: kurtosis γ̄2 as a function of the shape parameter p
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Figure shows the kurtosis γ̄2 as a function of the shape parameter
q for p = 0.3, 0.5, 0.7, 0.9 (left) and for p = 0.25, 0.75, 1, 10
(right). For p ∈ (−1, 0) the kurtosis tends from −2 to −1.2 when
q → ∞. For p > 0 kurtosis tends from ∞ to −1.2 when q → ∞.

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

0 10 20 30 40 50 60 70 80 90 100

Ex
ce

ss
 k

u
rt

o
si

s

q

EECK(p,q)

p=-0.9

p=-0.7

p=-0.5

p=-0.3

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

0 2 4 6 8 10 12 14 16 18 20

Ex
ce

ss
 k

u
rt

o
si

s

q

EECK(p,q)

p=0.25

p=0.75

p=1

p=10

Figure: kurtosis γ̄2 as a function of the shape parameter q
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Moors proposed a measure based on quantiles in the form

T =
x7/8−x5/8+x3/8−x1/8

x6/8−x2/8

where xu is the solution of quantile equation. The measure T is a
quantile alternative for kurtosis and exists even for distribution for
which no moments exist. The T (p) function decreases for
p (−1, 0) and increases for p > 0 mainly for its initial values. The
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Let X ∼ EECK (p > −1, q > 0),R ∼ U(0, 1). The algorithm for
generating n values of X , using the inverse CDF method, is as
follows:
1. Repeat steps 1.1-1.4 n times:
1.1 Let R ∼ U (0, 1),
1.2 Let x = −1+ 0.01,
1.3 If CDF (x ; p, q) < R, then x = x + 0.01,
1.4 Return x ,
It is obviously a universal algorithm for any distribution with
CDF (x ; par), where par is the vector of distribution parameters.
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The quantile function of the EECK (p, q) does not have an
analytical form, PDF is non-negative on the interval [−1, 1] and
bounded by constant d = f (0; p ≥ 0, q), then we can use the von
Neumann method, which in this case is much faster than the
inverse CDF method.

The algorithm for generating n values of X , using the von
Neumann method, is as follows:
1. If −1 < p < 0 then use the inverse CDF method
2. If p ≥ 0 then d = f (0; p, q)
3. Repeat steps 3.1-3.3 n times:
3.1 Let R1 ∼ U (−1, 1) ,R2 ∼ U (0, d),
3.2 If f (R1; p, q) < R2 then goto Step 3.1 else x = R1
3.3 Return x ,
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Theorem 9. The Fisher information matrix Ii ,j(i , j = 1, 2) for the
EECK (p > −1, q > 0) distribution is given by

I11 =[
A− B + H̃ (p)− H̃

(
p + 1q

)]2
+Ψ1 (p + 1)−Ψ1

(
p + 1q + 1

)
I12 = I21 =

(A−B)(C−A)
q2

−
(A−B)Γ

(
p+ 1

q
+1

)
Γ(p+1)Γ

(
1
q
+1

) +

+
(C−A)

[
H̃(p)−H̃

(
p+ 1

q

)]
q2

+
Γ
(
p+ 1

q
+1

)
pΓ(p+1)Γ

(
1
q
+1

)
I22 =

(C−A)2

q4
−
2(C−A)Γ

(
p+ 1

q
+1

)
q3Γ(p+1)Γ

(
1
q
+1

) +
pq2(pq+1)Γ

(
2− 1

q

)
Γ
(
p+ 1

q

)
(p−1)(pq−1)Γ

(
p− 1

q

)
Γ
(
1
q

)
where H̃ (z) =

∑z
k=1

1
k is the harmonic function, Ψn (z) is the nth

derivative of the digamma function

Ψ(z), A = Ψ
(
p + 1q + 1

)
,B = Ψ(p + 1) ,C = Ψ

(
1
q + 1

)
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Let x∗1 , x
∗
2 , ..., x

∗
n be a random sample size n from the

EECK (p > −1, q > 0) distribution. Our target is to estimate the
unknown values of the parameters p, q.

The likelihood function is given by

L =
∏n

i=1 f (x
∗
i ; p, q) =

Γ
(
p+ 1

q
+1

)
2Γ(p+1)Γ

(
1
q
+1

) ∏n
i=1 (1− |x∗i |

q)p

then the log-likelihood function is defined as

l = n ln
[
Γ
(
p + 1q + 1

)]
− n ln [2Γ (p + 1)]− n ln

[
Γ
(
1
q + 1

)]
+

p
∑n

i=1 ln (1− |x∗i |
q)

and
dl
dp = nΨ

(
p + 1q + 1

)
− nΨ(p + 1) +

∑n
i=1 ln (1− |x∗i |

q) = 0

dl
dq = −n

q2
Ψ
(
p + 1q + 1

)
+ n

q2
Ψ
(
1
q + 1

)
− npq|x∗i |

q−1

1−|x∗i |
q = 0

where Ψ is the digamma function.
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The maximum likelihood estimates (MLEs) are solutions of the
system equations. We have

1
n

n∑
i=1

ln (1− |x∗i |
q) = Ψ (p + 1)−Ψ

(
p +
1
q
+ 1

)
, (5)

Ψ

(
1
q
+ 1

)
−Ψ

(
p +
1
q
+ 1

)
= −

pq3 |x∗i |
q−1

1−
∣∣x∗i ∣∣q . (6)

Solving this system equations with numerical method we have
obtain p̂, q̂. We can also maximize the log-likelihood function to
obtain the MLEs of the p, q parameters.
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The simulation study was performed with 103 samples using
sample sizes of 100, 150, 200. The samples were drawn from the
EECK (p, 3), where p = 1, 2, 3 (see Table left) and from the
EECK (3, q), where q = 1, 2, 3 (see Table right).
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Comparison of goodness-of-fit tests
Fitting distributions to data

As it was mentioned in Introduction, the shape parameter of the
EECK distribution cannot be represented as a function of γ2, as is
for the ECK distribution (Sulewski, 2022). Recall, however, that
the ECK kurtosis takes values on interval (−2, 0), while the EECK
kurtosis has values on interval [−2,∞). Using e.g. Mathcad, you
can easily calculate the argument of a function knowing its value.

Let x(1), x(2), ..., x(n) be an ordered random sample of size n.
Seven GoFTs were selected to be subjects of the Monte Carlo
simulation. Five of them as being very popular GoFTs have been
implemented in the R software. These tests are: Shapiro-Wilk
(SW), Kolmogorov-Smirnov (KS), Cramer-von Mises (CVM),
Anderson-Darling (AD) and Shapiro - Francia (SF). Two tests not
implemented yet, probably for their novelty, are: Hn (Torabi, 2016)
and LFm (Sulewski, 2020) tests.
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The Hn test statistic is defined as

Hn =
1
n

n∑
i=1

h

1+Φ
(
x(i)−x

s , 0, 1
)

1+ i
n

 , h (x) =

(
x − 1
x + 1

)2
, (7)

where x and s2 are the sample mean and sample variance,
respectively.

The LFm test statistic is given by

LFm = max

∣∣∣∣ i − α

n − α− β + 1
− Φ

(
x(i) − x

s
, 0, 1

)∣∣∣∣ , (α, β ≥ 1
)
.

(8)
If an alternatively distribution is both symmetric and of negative
(positive) kurtosis α = β = 0 (α = β = 1) are recommended.
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Figure (left) shows PDF of the N (0, 0.096) and EECK (p, 1.96)
distributions. For the presented values of the shape parameters, an
kurtosis of the EECK is negative. If p increases, the similarity
measure also increases. Figure (right) shows PDF of the
N (0, 0.259) and EECK (p, 1.3) distributions.
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Table 2 (Table 3) shows the modeling of negative (positive)
kurtosis, i.e. for a given value of γ2 of the EECK (p, 1.96)
(EECK (p, 1.3)) the value of the shape parameter p is caclulated.

Table: Modeling of negative kurtosis γ2. EECK (p, 1.96)

Table: Modeling of positive kurtosis γ2. EECK (p, 1.3)

33 / 52



Introduction
Main properties of introduced distribution

Maximum likelihood estimation
Application
Conclusions
References

Comparison of goodness-of-fit tests
Fitting distributions to data

Phase 1: In this phase the aim is to investigate to what degree
selected GoFTs are able to distinct between the normal and
proposed distributions. In other words the aim is to determine
powers of GoFTs being under discussion when samples come from
EECK (p, q) general populations. Critical values cv0.05 ascribed to
GoFTs (where α = 0.05 is the test significance level) were
estimated with the Monte Carlo method.
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Table: Powers of tests at α = 0.05, when the EECK (p, 1.96) is the
actual population distribution. The case of negative kurtosis values
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Table: Powers of tests at α = 0.05, when the EECK (p, 1.3) is the
actual population distribution. The case of positive kurtosis values
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Comparison of goodness-of-fit tests
Fitting distributions to data

The conclusions from tables are very interesting.

For n = 20, the LF, CvM, AD, SW, Hn tests detect only
γ2 = −1, LFm - γ2 = −0.75; LFm, SF tests detect even
γ2 = 0.001.

For n = 40, the LF, CvM, AD, SW, Hn and LFm tests detect
only γ2 = −0.75; LF, CvM, AD, Hn, and LFm tests detect
even γ2 = 0.001.

For n=60, the AD, Hn and LFm tests detect only γ2 = −0.5;
LF and CVM tests detect only γ2 = −0.75; LF, CvM, AD,
Hn, and LFm tests detect even γ2 = 0.001.

In Phase 1, we showed that the considered GoFTs detect positive
kurtosis better than negative one.

37 / 52



Introduction
Main properties of introduced distribution

Maximum likelihood estimation
Application
Conclusions
References

Comparison of goodness-of-fit tests
Fitting distributions to data

The conclusions from tables are very interesting.

For n = 20, the LF, CvM, AD, SW, Hn tests detect only
γ2 = −1, LFm - γ2 = −0.75; LFm, SF tests detect even
γ2 = 0.001.

For n = 40, the LF, CvM, AD, SW, Hn and LFm tests detect
only γ2 = −0.75; LF, CvM, AD, Hn, and LFm tests detect
even γ2 = 0.001.

For n=60, the AD, Hn and LFm tests detect only γ2 = −0.5;
LF and CVM tests detect only γ2 = −0.75; LF, CvM, AD,
Hn, and LFm tests detect even γ2 = 0.001.

In Phase 1, we showed that the considered GoFTs detect positive
kurtosis better than negative one.

37 / 52



Introduction
Main properties of introduced distribution

Maximum likelihood estimation
Application
Conclusions
References

Comparison of goodness-of-fit tests
Fitting distributions to data

The conclusions from tables are very interesting.

For n = 20, the LF, CvM, AD, SW, Hn tests detect only
γ2 = −1, LFm - γ2 = −0.75; LFm, SF tests detect even
γ2 = 0.001.

For n = 40, the LF, CvM, AD, SW, Hn and LFm tests detect
only γ2 = −0.75; LF, CvM, AD, Hn, and LFm tests detect
even γ2 = 0.001.

For n=60, the AD, Hn and LFm tests detect only γ2 = −0.5;
LF and CVM tests detect only γ2 = −0.75; LF, CvM, AD,
Hn, and LFm tests detect even γ2 = 0.001.

In Phase 1, we showed that the considered GoFTs detect positive
kurtosis better than negative one.

37 / 52



Introduction
Main properties of introduced distribution

Maximum likelihood estimation
Application
Conclusions
References

Comparison of goodness-of-fit tests
Fitting distributions to data

The conclusions from tables are very interesting.

For n = 20, the LF, CvM, AD, SW, Hn tests detect only
γ2 = −1, LFm - γ2 = −0.75; LFm, SF tests detect even
γ2 = 0.001.

For n = 40, the LF, CvM, AD, SW, Hn and LFm tests detect
only γ2 = −0.75; LF, CvM, AD, Hn, and LFm tests detect
even γ2 = 0.001.

For n=60, the AD, Hn and LFm tests detect only γ2 = −0.5;
LF and CVM tests detect only γ2 = −0.75; LF, CvM, AD,
Hn, and LFm tests detect even γ2 = 0.001.

In Phase 1, we showed that the considered GoFTs detect positive
kurtosis better than negative one.

37 / 52



Introduction
Main properties of introduced distribution

Maximum likelihood estimation
Application
Conclusions
References

Comparison of goodness-of-fit tests
Fitting distributions to data

Phase 2. In this phase the aim is to investigate to what degree an
undetected kurtosis impacts the performance of two basic tests
related to parameters of the Normal distribution, namely Student t
test and Fisher – Snedecor F test.

Let x1,1, x1,2, ..., x1,n and x2,1, x2,2, ..., x2,n be two samples of sizes n
drawn from particular general populations. Let us remember that t
and F test statistics have the following forms:

ṫ =
x1 − x2√

s2x1+s2x2
n

, Ḟ =
s2x1
s2x2

, (9)

where x1, x2 are the sample means and sx1, sx2 are the sample
standard deviations.
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Comparison of goodness-of-fit tests
Fitting distributions to data

The course of action was as follows:

1 m = 105 pairs of samples both of size n = 60 were drawn
from EECK (4, 627, 1.96) (for negative kurtosis) and
EECK (3.669, 1.3) (for positive kurtosis) general populations.

2 These pairs of samples were consecutively, converted into
pairs of ṫv statistics and Ḟv statistics, v = 1, 2, ...,m.

3 Sets of values of ṫv and Ḟv statistics were stored in two
matrices named T and F .

4 The matrices were sorted in ascending order and served to

determine two empirical CDFs namely Θt

(
ṫv
)
and ΘF

(
Ḟv

)
.

5 Probability papers were employed to check whether the above
empirical CDFs fit the Student and Fisher-Snedecor
distributions.
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Figures show empirical CDFs plotted on the Student and Snedecor
probability papers, when samples were drawn from
EECK (4, 627, 1.96) and EECK (3.669, 1.3), appropriately. These
probability papers were constructed in the same way as the Normal
probability is constructed.
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Figure: Empirical CDFs plotted on the Student and Snedecor
probability paper. Case of negative kurtosis values
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It turns out that the empirical distribution in question perfectly fit
straight lines that relevant theoretical distributions. Thus, we can
conclude that Student and Fisher-Snedecor tests may be applied
even as population distributions are of negative or positive kurtosis.
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Comparison of goodness-of-fit tests
Fitting distributions to data

Symmetric distributions have limited use in fitting the distributions
to data (e.g. normal distribution). However, the situation looks
much better when we use their mixture (e.g. compound normal
distribution).

For the purposes of this subsection, we extend the domain of the
EECK (p, q) from [−1, 1] to [−a, a](a ∈ R). PDF of the modified
EECK (p, q) distribution denoted as EECK2(x , a, p, q) has the form

EECK2 (x ; a, p, q) =
∫ a
−a

[
1−

(
|x|
a

)q]p
dx

2
∫ a
0

[
1−

(
|u|
a

)q]p
du

x ∈
{

(−a, a) if − 1 < p < 0
[−a, a] if p ≥ 0
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Comparison of goodness-of-fit tests
Fitting distributions to data

We present real data examples to demonstrate a flexibility of the
EECK (p > −1, q > 0) distribution in the mixed variant. PDF of
the compound EECK (CEECK) distribution is given by

CEECK (x ; a, p1, q1, p2, q2, ω) =
ωEECK2 (x ; a, p1, q1) + (1− ω)EECK2 (x ; a, p2, q2)

The estimation of the model parameters is carried out by the
maximum likelihood method. To avoid local maxima of the
logarithmic likelihood function, the optimization routine is run 100
times with several different starting values that are widely
scattered in the parameter space.
The KS GoFT was used for model fitting, while the AIC, BIC and
HQIC were used for model comparisons.
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Comparison of goodness-of-fit tests
Fitting distributions to data

The first data set presents temperature dynamics of beaver Castor
canadensis in north-central Wisconsin (Reynolds, 1994). Body
temperature was measured by telemetry every 10 minutes from one
period of less than a day. The data consists of 114 observations of
the variable measured body temperature in degrees Celsius and are
available in the R software with code beaver1[3].

The second data set contains statistics, in arrests per 100,000
residents for assault in each of the 50 US states in 1973 (McNeil,
1977). The data consisting of 50 observations are available in the
R software with code USArrests[2].
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Comparison of goodness-of-fit tests
Fitting distributions to data

The models selected for comparison with the CEECK are:

the compound ECK (CECK):

fCECK (x) = ω

(
1− x2

a2

)p1

aB(0.5,p1+1)
+ (1− ω)

(
1− x2

a2

)p2

aB(0.5,p2+1)

the compound normal (CN):

fCN (x) = ωϕ (x ; a1, b1) + (1− ω)ϕ (x ; a2, b2)

the compound Laplace (CL):

fCL (x) =
ω
2b1

exp
[
exp

(
− |x−a1|

b1

)]
+ 1−ω
2b2

exp
[
exp

(
− |x−a2|

b2

)]
,

the compound Cauchy (CC):

fCC (x) = ω

πb1

[
1+

(
x−a1
b1

)2] + 1−ω

πb2

[
1+

(
x−a2
b2

)2]
the compound logistic (CLOG):

fCLOG (x) =
ω exp

(
x−a1
b1

)
b1

[
1+exp

(
x−a1
b1

)2] +
(1−ω) exp

(
x−a2
b2

)
b2

[
1+exp

(
x−a2
b2

)2] .
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Table: Results of estimation for the first data set

Table: Results of estimation for the second data set
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Comparison of goodness-of-fit tests
Fitting distributions to data

Figure 7 presents histograms, estimated PDFs of the analyzed
models. The CEECK model is distinguished in terms of the KS
GoFT for the first data set. This model has the smallest values of
the −l , AIC, BIC and HQIC.
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Figure: Histograms and estimated PDF of analyzed models for first
(left) and second (right) data sets
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The article presents the extended easily changeable kurtosis
(EECK) distribution, the special cases of which are the ECK,
uniform and triangle distributions.

The new proposal tends to the normal distribution.

The EECK, like the ECK, belongs to the family of symmetric,
unimodal distributions, defined in the finite domain with
kurtosis values on infinite interval.

the new proposal can be extremely useful when we want to
seamlessly test GoFT’s ability to detect deviations from
normality by modeling of negative or positive kurtosis.

Student and Fisher-Snedecor tests may be applied even as
population distributions are of negative or positive kurtosis.
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Real data example demonstrates that the EECK (p, q)
distribution in the mixed variant is flexible and competitive
model that deserves to be added to the existing distributions
in data modeling.

The information presented in the article shows that the
proposed distribution deserves to be added to the symmetric
distribution family.
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