
Inference for the multivariate coefficients of variation
in factorial designs

Marc Ditzhaus1 and Łukasz Smaga2

1Institute for Mathematics
Otto-von-Guericke University Magdeburg

Magdeburg, Germany
2Faculty of Mathematics and Computer Science

Adam Mickiewicz University
Poznań, Poland

Marc Ditzhaus and Łukasz Smaga Inference for MCsV in factorial designs 1 / 31



Coefficient of variation

• The coefficient of variation (CV)
c = σ

µ

is a widely used unit-free measure of dispersion.
• It is a popular tool to judge, e.g.,

• the repeatability of measurements in clinical trials,
• the risk in the financial world or in psychology,
• the quantitative variability in genetics.

• It is also a reliability tool in control charts for monitoring.
• Various inference methods are suggested to compare two or several groups in terms of CV

(Aerts and Haesbroeck, 2017; Pauly and S., 2020).
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Multivariate coefficients of variation

• However, when more than one feature is of interest, comparisons based on marginal CVs are
misleading due to potentially different decisions for the single features (Van Valen, 1974),
and does not account for correlations between the features.

• The solution is to use the multivariate coefficient of variation (MCV).
• However, the extension is not unique and there is no default choice up until now.
• Reyment (1960), Van Valen (1974), Voinov and Nikulin (1996) and Albert and Zhang

(2010) suggest to define the MCV by

CRR =

√
(det Σ)1/d

µ⊤µ
, CVV =

√
trΣ
µ⊤µ

, CVN =
√

1
µ⊤Σ−1µ

, CAZ =
√

µ⊤Σµ

(µ⊤µ)2 ,

respectively. Here µ denotes the nonzero mean vector of a d-dimensional random variable
and Σ is corresponding covariance matrix.
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Multivariate coefficients of variation

• All these definitions reduces to the CV in the univariate (d = 1) case.
• The differences of them are discussed in great detail by Albert and Zhang (2010).
• Additionally, the standardized means as the reciprocal of Cv are of their own interest:

Bv = 1
Cv (v = RR, VV, VN, AZ). (1)
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Multivariate coefficients of variation

• A further problem of the MCV is the lack of generally applicable inference methods.
• Aerts and Haesbroeck (2017) considered testing the equality of several MCVs following the

definition of Voinov and Nikulin (1996):

CVN =
√

1
µ⊤Σ−1µ

.

• But their methods rely on the specific assumption of the underlying distribution (elliptical
symmetric distribution) and the convergence speed of their test statistic is rather slow
leading to an inconsistent type-1 error control for small sample sizes.

• Ditzhaus and S. (2022) proposed the permutation test for the above MCV in factorial
designs, which has good theoretical and finite sample properties.
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Asymptotic normality in the nonparametric framework

• We consider n1 independent, identically distributed d-dimensional random variables

X j = (Xj1, . . . , Xjd)⊤ (j = 1, . . . , n1).

• We suppose no specific conditions on the distributions of X j except the following assump-
tions on the moments to ensure the well-definedness of C j and Bj :

Assumption 1

Let µ ̸= 0 and E (X 4
jℓ) < ∞ for all j and ℓ. Moreover, we suppose:

(a) For CRR, CVN, BRR, and BVN, we consider only regular matrices Σ.

(b) For CVV and BVV, we assume Σ ̸= 0d×d .

(c) For CAZ and BAZ, we suppose µ⊤Σµ > 0.
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Asymptotic normality in the nonparametric framework

• We estimate the MCVs or their reciprocals by:

ĈRR =

√√√√(det Σ̂)1/d

µ̂⊤µ̂
, ĈVV =

√√√√ trΣ̂
µ̂⊤µ̂

, ĈVN =
√

1
µ̂⊤Σ̂−1

µ̂
, ĈAZ =

√√√√ µ̂⊤Σ̂µ̂

(µ̂⊤µ̂)2
, B̂v = 1/Ĉv ,

where
µ̂ = 1

n1

n1∑
j=1

X j , Σ̂ = 1
n1

n1∑
j=1

(X j − µ̂)(X j − µ̂)⊤.
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Asymptotic normality in the nonparametric framework

Theorem 1

Assume that n1 → ∞. Let v ∈ {RR, VV, VN, AZ} and Assumption 1 be fulfilled.
i The estimators Ĉv are asymptotically normal,

n1/2
1

(
Ĉv − Cv

) d−→ ZCv ∼ N(0, σ2
Cv ),

σ2
Cv = Sv

4 Av (µ, Σ)
(

Σ Ψ⊤
3

Ψ3 Ψ4

)
Av (µ, Σ)⊤,

where SRR = d−2(CRR)2−4d , SVV = (CVV)−2, SVN = (CVN)6, SAZ = (CAZ)−2.
ii The reciprocals B̂v

i are asymptotically normal as well,

n1/2
1

(
B̂v − Bv

) d−→ ZBv ∼ N(0, σ2
Bv ) with σ2

Bv = (Cv )−4σ2
Cv .
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Asymptotic normality in the nonparametric framework

ARR(µ, Σ) =

−2d det(Σ) µ⊤

(µ⊤µ)d+1 +
det(Σ)

(
vec(Σ−1)

)⊤

(µ⊤µ)d D̃(µ),
det(Σ)

(
vec(Σ−1)

)⊤

(µ⊤µ)d

 ,

AVV(µ, Σ) =
(

−2 tr(Σ) µ⊤

(µ⊤µ)2 + 1
µ⊤µ

(vec(Id))⊤ D̃(µ), 1
µ⊤µ

(vec(Id))⊤
)

,

AVN(µ, Σ) =
(
2 µ⊤Σ−1 − [(µ⊤Σ−1) ⊗ (µ⊤Σ−1)]D̃(µ), −(µ⊤Σ−1) ⊗ (µ⊤Σ−1)

)
,

AAZ(µ, Σ) =
(

−4 µ⊤Σµ
µ⊤

(µ⊤µ)3 + 2 µ⊤Σ
(µ⊤µ)2 + µ⊤ ⊗ µ⊤

(µ⊤µ)2 D̃(µ), µ⊤ ⊗ µ⊤

(µ⊤µ)2

)

where ⊗ is the Kronecker product, and
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Asymptotic normality in the nonparametric framework

the matrices D̃(x) ∈ Rd2×d for x = (x1, . . . , xd)⊤ ∈ Rd , Ψi3 ∈ Rd2×d as well as Ψi4 ∈ Rd2×d2

are given by their entries

[D̃(x)]ad−d+r ,s = −xr I{s = a ̸= r} − 2xs I{s = r = a} − xaI{r = s ̸= a}
[Ψi3]ad−d+r ,s = E (Xi1aXi1r Xi1s) − E (Xi1aXi1r )E (Xi1s)
[Ψi4]ad−d+r ,bd−d+s = E (Xi1aXi1r Xi1bXi1s) − E (Xi1aXi1r )E (Xi1bXi1s)

for a, b, r , s ∈ {1, . . . , d}.
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Asymptotic normality in the nonparametric framework

• The variances σ2
Bv and σ2

Cv can be naturally estimated by replacing the expectations and
covariances by their empirical counterparts, for instance:

[Ψ̂3]ad−d+r ,s =
(
n−1

1

n1∑
j=1

XjaXjr Xjs
)

−
(
n−1

1

n1∑
j=1

XjaXjr
)(

n−1
1

n1∑
j=1

Xjs
)
.

• We obtain

σ̂2
Cv = Ŝv

4 Av (µ̂, Σ̂)
(

Σ̂ Ψ̂⊤
3

Ψ̂3 Ψ̂4

)
Av (µ̂, Σ̂)⊤, σ̂2

Bv = (Ĉv )−4σ̂2
Cv , (2)

where ŜRR = d−2(ĈRR)2−4d , ŜVV = (ĈVV)−2, ŜVN = (ĈVN)6, ŜAZ = (ĈAZ)−2.

Lemma 2 (Consistent variance estimators)

Under Assumption 1, σ̂2
Cv

p→ σ2
Cv and σ̂2

Bv
p→ σ2

Bv .
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Asymptotic normality in the nonparametric framework

Definition 3 (Conditional two-point distribution)
Let Y = (Y1, . . . , Yd)⊤ ∈ Rd be a multivariate random variable. We call the r th coordinate
Yr conditionally two-point distributed if it is (conditionally) degenerated or it just takes (con-
ditionally) two different values with positive probability, both given the remaining components
(Ys)s=1,...,d ;s ̸=r .

Assumption 2

No coordinate of X1 is conditionally two-point distributed.

Lemma 4 (Nondegenerecy)
Under Assumptions 1 and 2 we have σ2

Cv > 0 and, thus, σ2
Bv > 0.
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Global testing for factorial designs

• Let

X ij = (Xij1, . . . , Xijd)⊤ (i = 1, . . . , k; j = 1, . . . , ni),

where X i1, . . . , X ini are identically distributed for each i = 1, . . . , k and all observations
X11, . . . , Xknk are mutually independent.

• We choose a contrast matrix H ∈ Rr×k , i.e. H1k×1 = 0r×1. We like to infer:

H0,Cv : HCv = 0r×1, H0,Bv : HBv = 0r×1, (3)

where Cv = (Cv
1 , . . . , Cv

k )⊤ and Bv = (Bv
1 , . . . , Bv

k )⊤ (v = RR, VV, VN, AZ).
• In the classical k-sample scenario, the null hypothesis of no group effect can be tested by

H0,Cv : {PkCv = 0k×1} = {Cv
1 = . . . = Cv

k },

where
Pk = Ik − 1k×k/k.
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Global testing for factorial designs

• Let

ni
n → κi ∈ (0, 1) for all i = 1, . . . , k, n =

k∑
i=1

ni . (4)

• The Wald-type statistics for testing general null hypotheses (3):

Sn,Cv (H) = n(HĈv )⊤(HΣ̂Cv H⊤)+HĈv
, Sn,Bv (H) = n(HB̂v )⊤(HΣ̂Bv H⊤)+HB̂v

,

where

Σ̂Cv = diag((n/n1)σ̂2
1,Cv , . . . , (n/nk)σ̂2

k,Cv )
Σ̂Bv = diag((n/n1)σ̂2

1,Bv , . . . , (n/nk)σ̂2
k,Bv )

are diagonal matrices, and A+ is the Moore–Penrose inverse for a matrix A.
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Global testing for factorial designs

Theorem 5

Let (4) as well as Assumptions 1 and 2 be fulfilled for all (sub-)groups i = 1, . . . , k.
(i) Under H0,Cv : HCv = 0, Sn,Cv (H) tends in distribution to Z ∼ χ2

rank(H).
(ii) Under H1,Cv : HCv ̸= 0, Sn,Cv (H) diverges, i.e. Sn,Cv (H) converges in probability to ∞.
(iii) Under H0,Bv : HBv = 0, Sn,Bv (H) tends in distribution to Z ∼ χ2

rank(H).
(iv) Under H1,Bv : HBv ̸= 0, Sn,Bv (H) diverges, i.e. Sn,Bv (H) converges in probability to ∞.

• We obtain asymptotically valid tests

φn,Cv = 1{Sn,Cv (H) > χ2
rank(H),1−α},

φn,Bv = 1{Sn,Bv (H) > χ2
rank(H),1−α},

i.e. they have an asymptotic level α and an asymptotic power of 1.
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Global testing for factorial designs

• To improve finite sample properties of the Wald-type statistic, we consider permutation
and bootstrap tests.

• We first group all data together resulting in pooled data by X = (X ij)i=1,...,k;j=1,...,ni .
• We draw without or with replacement from X to obtain

• a permutation Xπ = (Xπ
ij )i=1,...,k;j=1,...,ni ,

• a bootstrap Xb = (Xb
ij)i=1,...,k;j=1,...,ni

sample, respectively.
• The benefit of the permutation approach is its finite exactness under exchangeability, here

under H̃0 : X11
d= . . .

d= Xk1.
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Global testing for factorial designs

• The expectation µ0 =
∑k

i=1 κiµi and the covariance matrix Σ0 for the (asymptotic) pooled
distribution P0 =

∑k
i=1 κiPX i1 , where [Σ0]ℓm = (

∑k
i=1 κiE (Xℓ1Xm1)) − [µ0]ℓ[µ0]m.

• Assumption 2 is true for the pooled distribution when this is the case for all (sub-)groups.

Theorem 6
In addition to the assumptions of Theorem 1, we suppose that Assumption 1 is fulfilled for
µ0 and Σ0. Then the following statements are valid independently whether the respective null
hypotheses H0,Cv , H0,Bv or their respective alternatives are true:

(a) The permutation statistics Sπ
n,Cv (H) and Sπ

n,Bv (H) always mimic the null distribution limit
of Sn,Cv (H) and Sn,Bv (H) asymptotically, respectively, i.e.,

sup
x∈R

∣∣∣Pr
(
Sπ

n,Cv (H) ≤ x | X
)

− χ2
rank(H)(x)

∣∣∣ p→ 0.

(b) The bootstrap statistics Sb
n,Cv (H) and Sb

n,Bv (H) always mimic the null distribution limit of
Sn,Cv (H) and Sn,Bv (H) asymptotically, respectively.
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Multiple testing

• The multiple testing problem

H0,ℓ,Cv : h⊤
ℓ Cv = 0 (ℓ = 1, . . . , r) (5)

for contrast vectors hℓ ∈ Rk , i.e. h⊤
ℓ 1k×1 = 0.

• The intersection r⋂
ℓ=1

H0,ℓ,Cv

of the local null hypotheses coincides with the global null hypothesis H0,Cv from (3) with
H = (h1, . . . , hr )⊤.
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Multiple testing

• In the easiest case, we are interested in group differences, i.e. the global null hypotheses is
H0,Cv : Cv

1 = . . . = Cv
k .

• Tukey’s all-pairs comparison (Tukey, 1953)

H0,Cv : Cv
1 = . . . = Cv

k ⇔

H0,Cv :



Cv
1 = Cv

2
Cv

1 = Cv
3

...
Cv

1 = Cv
k

Cv
2 = Cv

3
...
Cv

k−1 = Cv
k

⇔ H0,Cv :



−1 1 0 . . . . . . 0 0
−1 0 1 0 . . . . . . 0
...

...
...

...
...

...
...

−1 0 0 0 . . . . . . 1
0 −1 1 0 . . . . . . 0
...

...
...

...
...

...
...

0 . . . . . . . . . 0 −1 1


Cv = 0

Marc Ditzhaus and Łukasz Smaga Inference for MCsV in factorial designs 19 / 31



Multiple testing

• We consider the following max-type statistic

Sn,max,Cv (H) = max
ℓ=1,...,r

|T v
ℓ,n|, T v

ℓ,n =
√

n h⊤
ℓ Ĉv√

h⊤
ℓ Σ̂Cv hℓ

,

where |T v
ℓ,n| equals (Sn,Cv (h⊤

ℓ ))1/2.
• By Theorem 1, (T v

1,n, . . . , T v
r ,n) converges in distribution to a multivariate normal distri-

bution with standard normal distributed marginals and correlation matrix RCv given by its
entries

[RCv ]ℓm = h⊤
ℓ ΣCv hm√

h⊤
ℓ ΣCv hℓ

√
h⊤

mΣCv hm
. (6)
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Multiple testing

• The equicoordinate (1 − α)-quantile q1−α,max,Cv (R) of a N(0, RCv )-distribution serves as
a “fair” critical value.

• Such quantiles can be determined numerically by computer software, e.g. the function
qmvnorm() from the R-package mvtnorm (R Core Team, 2023; Genz et al., 2021; Genz
and Bretz, 2009).

• An asymptotically exact test

φn,max,Cv = 1{Sn,max,Cv (H) > q1−α,max,Cv (R̂Cv )}

for the global null hypothesis H0,Cv .
• We reject the local null hypothesis H0,ℓ,Cv when T v

ℓ,n > q1−α,max,Cv (R̂Cv ).
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Multiple testing

Theorem 7

Let (4) as well as Assumptions 1 and 2 be fulfilled for all (sub-)groups i = 1, . . . , k.

(a) The test φn,max,Cv is asymptotically exact for the global null H0,Cv , i.e.
EH0,Cv (φn,max,Cv ) → α.

(b) Suppose that the first r ′ ≤ r null hypotheses and the remaining r − r ′ alternatives, i.e.
H1,ℓ,Cv : h⊤

ℓ Cv ̸= 0 for ℓ = r ′ + 1, . . . , r , are true. Then

lim sup
n→∞

Pr
( r ′⋃

ℓ=1
{|T v

ℓ,n| > q1−α,max,Cv (R̂Cv )}
)

≤ α

and lim
n→∞

Pr
( r⋂

ℓ=r ′+1
{|T v

ℓ,n| > q1−α,max,Cv (R̂Cv )}
)

= 1.

(c) The statements remain true when Cv is replaced by Bv .
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Multiple testing

• Using the pooled bootstrap, we propose to approximate n1/2(Ĉv − Cv ) by

n1/2Σ̂1/2
Cv (Σ̂b

Cv )−1/2(Ĉvb − Ĉv
0), Ĉv

0 = Ĉv
0 · 1k×1.

• The bootstrap multiple contrast statistic becomes

Sb
n,max,Cv (H) = n1/2 max

ℓ=1,...,r
|T v ,b

ℓ,n |, T v ,b
ℓ,n = h⊤

ℓ Σ̂1/2
Cv (Σ̂b

Cv )−1/2(Ĉvb − Ĉv
0)√

h⊤
ℓ Σ̂Cv hℓ

.

• Then
φb

n,max,Cv = 1{Sn,max,Cv (H) > qb
1−α,max,Cv (X)}

is the bootstrap counterpart of the multiple contrast test, where qb
1−α,max,Cv (X) is the

conditional, equicoordinate (1 − α)-quantile of n1/2(T v ,b
1,n , . . . , T v ,b

r ,n )⊤ given the data X .
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Multiple testing

Theorem 8
In addition to the assumptions of Theorem 1, we suppose that Assumption 1 is fulfilled for the
pooled quantities µ0 and Σ0. Then the statements of Theorem 7 remain true when we replace
φn,max,Cv and q1−α,max,Cv (R̂Cv ) by their bootstrap counterparts φb

n,max,Cv and qb
1−α,max,Cv (X),

respectively. Moreover, the analogue results for B instead of C are true.

• The asymptotic covariance structure of n1/2(Ĉvπ − Ĉv
0) is more complicated than the

bootstrap one, which is caused by the strong dependence within the permutation sample.
In particular, the permutation covariance matrix is neither diagonal nor regular.
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Type-1 error control
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Type-1 error control
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Empirical power
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GFDmcv package in R

• Ditzhaus M., Smaga Ł. (2023). GFDmcv: General Hypothesis Testing Problems for Mul-
tivariate Coefficients of Variation. R package version 0.1.0, https://CRAN.R-project.
org/package=GFDmcv.

• # contrast matrices
k <- length(data_set)
# Tukey’s contrast matrix
h_mct <- contr_mat(k, type = "Tukey")
# centering matrix P_k
h_wald <- contr_mat(k, type = "center")
# testing without parallel computing
res <- GFDmcv(data_set, h_mct, h_wald)
summary(res, digits = 3)
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